skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol
In this research, a novel electrochemical biosensor is proposed based on inducing graphene formation on polyimide substrate via laser engraving. Graphene polyaniline (G-PANI) conductive ink was synthesized by planetary mixing and applied to the working zone of the developed sensor to effectively enhance the electrical signals. The laser-induced graphene (LIG) sensor was used to detect alpha-fetoprotein (AFP) and 17β-Estradiol (E2) in the phosphate buffer saline (PBS) buffer and human serum. The electrochemical performance of the biosensor in determining these biomarkers was investigated by differential pulse voltammetry (DPV) and chronoamperometry (CA). In a buffer environment, alpha-fetoprotein (AFP) and 17β-Estradiol detection range were 4–400 ng/mL and 20–400 pg/mL respectively. The experimental results showed a limit of detection (LOD) of 1.15 ng/mL and 0.96 pg/mL for AFP and estrogen, respectively, with an excellent linear range (R2 = 0.98 and 0.99). In addition, the designed sensor was able to detect these two types of biomarkers in human serum successfully. The proposed sensor exhibited excellent reproducibility, repeatability, and good stability (relative standard deviation, RSD = 0.96%, 1.12%, 2.92%, respectively). The electrochemical biosensor proposed herein is easy to prepare and can be successfully used for low-cost, rapid detection of AFP and E2. This approach provides a promising platform for clinical detection and is advantageous to healthcare applications.  more » « less
Award ID(s):
2138574
PAR ID:
10562004
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Polymers
Volume:
16
Issue:
14
ISSN:
2073-4360
Page Range / eLocation ID:
2069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5–400 µM, 0.005–50 ng/mL, and 2 pg/mL–2 µg/mL, respectively, using a minute sample volume of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement offered by our fabricated biosensor is advantageous to healthcare applications. 
    more » « less
  2. In this research, a novel interdigitated gear-shaped, graphene-based electrochemical biosensor was developed for the detection of dopamine (DA). The sensor’s innovative design improves the active surface area by 94.52% and 57% compared to commercially available Metrohm DropSens 110 screen-printed sensors and printed circular sensors, respectively. The screen-printed electrode was fabricated using laser processing and modified with graphene polyaniline conductive ink (G-PANI) to enhance its electrochemical properties. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) were employed to characterize the physiochemical properties of the sensor. Dopamine, a neurotransmitter crucial for several body functions, was detected within a linear range of 0.1–100 µM, with a Limit of Detection (LOD) of 0.043 µM (coefficient of determination, R2 = 0.98) in phosphate-buffer saline (PBS) with ferri/ferrocyanide as the redox probe. The performance of the sensor was evaluated using cyclic voltammetry (CV) and Chronoamperometry, demonstrating high sensitivity and selectivity. The interdigitated gear-shaped design exhibited excellent repeatability, with a relative standard deviation (RSD) of 1.2% (n = 4) and reproducibility, with an RSD of 2.3% (n = 4). In addition to detecting dopamine in human serum, the sensor effectively distinguished dopamine in a ternary mixture containing uric acid (UA) and ascorbic acid (AA). Overall, this novel sensor design offers a reliable, disposable, and cost-effective solution for dopamine detection, with potential applications in medical diagnostics and neurological research. 
    more » « less
  3. The inflammation marker Interleukin 6 (IL-6) typically remains below 5 pg/mL in the serum of healthy individuals but can increase tenfold during inflammation in chronic conditions like COVID-19 and rheumatoid arthritis, as well as acute conditions like sepsis. This study is focused on the rapid detection of IL-6 to monitor both chronic and acute diseases. The novel sensor, designed with gold-coated micropyramids on the electrodes, was fabricated using the two-photon polymerization method, enabling low-volume sensing capabilities (2-3 μL). The micropyramids were surface functionalized with interleukin-6 antibodies towards developing an affinity biosensor specific to the physiological relevant range of IL-6 of 5.1 and 18.8 pg/mL in mild inflammation. Sensing was achieved by measuring impedance changes associated with IL-6 binding to the antibodies on the micropyramids interfaced using electrochemical impedance spectroscopy. It was observed that the signals from the lowest detection concentration was enhanced by 3 times at 1500 hz when the 532 nm green laser was incident on the micropyramids. This innovative approach can be expanded to the detection of cytokines not only in serum but also in respiratory samples. As a result, it opens up new avenues for monitoring local inflammation within the lungs and assessing systemic inflammation levels throughout the body. 
    more » « less
  4. Abstract Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg ml −1 for spike RBD and 110.38 ± 9.00 pg ml −1 for spike S1) as well as fast response time (∼30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml −1 and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests. 
    more » « less
  5. Abstract Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) “antennas” labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface‐enhanced Raman spectroscopy (SERS). The peptide‐conjugated GNS‐SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de‐identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low‐cost PRADA will have tremendous translational impact and be amenable to resource‐limited settings for accurate treatment planning in patients. 
    more » « less