skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precise Measurements of the LMC Bar’s Geometry with Gaia DR3 and a Novel Solution to Crowding-induced Incompleteness in Star Counting
Abstract We present new measurements of the 2D geometry of the LMC’s stellar bar with precise astrometric observations of red clump stars in Gaia DR3. We develop a novel solution to tackle crowding-induced incompleteness in Gaia data sets with the Gaia BP-RP color excess. Utilizing the color excess information, we derive a 2D completeness map of the LMC’s disk. We find that incompleteness biases the bar measurements and induces large uncertainties. With the completeness-corrected 2D red clump map, we precisely measure the LMC bar’s properties using Fourier decomposition. The bar radius (semimajor axis) is R bar = 2.13 0.04 + 0.03 kpc, and its position angle is 121.°26 ± 0.°21. The bar’s strength as quantified by the Fourier bi-symmetric amplitude isSbar= 0.27, indicating that the LMC has a significant bar perturbation. We find the bar has an axis ratio of 0.54 ± 0.03, and is offset with respect to the center of the outer disk isophote atR≈ 5 kpc by 0.76 ± 0.01 kpc. These LMC bar properties agree with a hydrodynamic model where the SMC has undergone a recent direct collision with the LMC. We compare the LMC’s bar properties with other barred galaxies in the local Universe, and discover that the LMC is similar to other barred galaxies in terms of bar-galaxy scaling relations. We discuss how our completeness correction framework can be applied to other systems in the Local Group.  more » « less
Award ID(s):
1941096
PAR ID:
10562052
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 55
Size(s):
Article No. 55
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The LMC’s stellar bar is offset from the outer disk center, tilted from the disk plane, and does not drive gas inflows. These properties are atypical of bars in gas-rich galaxies, yet the LMC bar’s strength and radius are similar to typical barred galaxies. UsingN-body hydrodynamic simulations, we show that the LMC’s unusual bar is explainable if there was a recent collision (impact parameter ≈2 kpc) between the LMC and SMC. Pre-collision, the simulated bar is centered and coplanar. Post-collision, the simulated bar is offset (≈1.5 kpc) and tilted (≈8 . ° 6). The simulated bar offset reduces with time, and comparing with the observed offset (≈0.8 kpc) suggests the timing of the true collision to be 150–200 Myr ago. Then, 150 Myr post-collision, the LMC’s bar is centered with its dark matter (DM) halo, whereas the outer disk center is separated from the DM center by ≈1 kpc. The SMC collision produces a tilted-ring structure for the simulated LMC, consistent with observations. Post-collision, the simulated LMC bar’s pattern speed decreases by a factor of 2. We also provide a generalizable framework to quantitatively compare the LMC’s central gas distribution in different LMC–SMC interaction scenarios. We demonstrate that the SMC’s torques on the LMC’s bar during the collision are sufficient to explain the observed bar tilt, provided the SMC’s total mass within 2 kpc was (0.8–2.4) × 109M. Therefore, the LMC bar’s tilt constrains the SMC’s pre-collision DM profile, and requires the SMC to be a DM-dominated galaxy. 
    more » « less
  2. Abstract The Large Magellanic Cloud (LMC) is home to many Hiiregions, which may lead to significant outflows. We examine the LMC’s multiphase gas (T∼104-5K) in Hi, Sii, Siiv, and Civusing 110 stellar sight lines from the Hubble Space Telescope’s Ultraviolet Legacy Library of Young Stars as Essential Standards program. We develop a continuum fitting algorithm based on the concept of Gaussian process regression and identify reliable LMC interstellar absorption overvhelio= 175–375 km s−1. Our analyses show disk-wide ionized outflows in Siivand Civacross the LMC with bulk velocities of ∣vout, bulk∣ ∼ 20–60 km s−1, which indicates that most of the outflowing mass is gravitationally bound. The outflows’ column densities correlate with the LMC’s star formation rate surface densities (ΣSFR), and the outflows with higher ΣSFRtend to be more ionized. Considering outflows from both sides of the LMC as traced by Civ, we conservatively estimate a total outflow rate of M ̇ out 0.03 M yr 1 and a mass-loading factor ofη≳ 0.15. We compare the LMC’s outflows with those detected in starburst galaxies and simulation predictions, and find a universal scaling relation of v out , bulk Σ SFR 0.23 over a wide range of star-forming conditions (ΣSFR∼ 10−4.5–102Myr−1kpc−2). Lastly, we find that the outflows are corotating with the LMC’s young stellar disk and the velocity field does not seem to be significantly impacted by external forces; we thus speculate on the existence of a bow shock leading the LMC, which may have shielded the outflows from ram pressure as the LMC orbits the Milky Way. 
    more » « less
  3. Abstract We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius of a h = 1 .′ 88 0.33 + 0.42 ( 118 30 + 31 pc) and M V = 4.17 0.22 + 0.19 ; for Psc II, we measure a h = 1 .′ 31 0.09 + 0.10 (69 ± 8 pc) and M V = 4.28 0.16 + 0.19 . We do not find any morphological features that indicate a significant interaction between the two has occurred, despite their close separation of only ∼40 kpc. Using proper motions (PMs) from Gaia early Data Release 3, we investigate the possibility of any past association by integrating orbits for the two UFDs in an MW-only and a combined MW and Large Magellanic Cloud (LMC) potential. We find that including the gravitational influence of the LMC is crucial, even for these outer-halo satellites, and that a possible orbital history exists where Peg III and Psc II experienced a close (∼10–20 kpc) passage about each other just over ∼1 Gyr ago, followed by a collective passage around the LMC (∼30–60 kpc) just under ∼1 Gyr ago. Considering the large uncertainties on the PMs and the restrictive priors imposed to derive them, improved PM measurements for Peg III and Psc II will be necessary to clarify their relationship. This would add to the rare findings of confirmed pairs of satellites within the Local Group. 
    more » « less
  4. Abstract We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M p = 0.59 0.05 + 0.15 M J at a projected orbital separation r = 1.4 0.3 + 0.8 au, and the host is a ∼1.1Mturnoff star at ∼1.3 kpc. At r 14 , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet’s orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the “inner–outer correlation” inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radiusθEbut also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less
  5. Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( M V = 2.5 0.5 + 0.3 ; L V = 850 260 + 380 L ), extended ( r 1 / 2 = 41 8 + 9 pc) stellar system located in the outer halo (D= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of v sys = 13.1 0.9 + 1.0 km s 1 for the system and place an upper limit ofσv< 3.5 km s−1v< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( σ [ Fe / H ] = 0.46 0.14 + 0.26 dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos. 
    more » « less