A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface (
We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius of
- PAR ID:
- 10368879
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 217
- Size(s):
- Article No. 217
- Sponsoring Org:
- National Science Foundation
More Like this
-
) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), and a higher electronic ASR ( ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because can reach a very high value with a gradually increased A crack may only occur under certain conditions when -
Abstract The interplay between charge transfer and electronic disorder in transition-metal dichalcogenide multilayers gives rise to superconductive coupling driven by proximity enhancement, tunneling and superconducting fluctuations, of a yet unwieldy variety. Artificial spacer layers introduced with atomic precision change the density of states by charge transfer. Here, we tune the superconductive coupling between
monolayers from proximity-enhanced to tunneling-dominated. We correlate normal and superconducting properties in tailored multilayers with varying SnSe layer thickness ( ). From high-field magnetotransport the critical fields yield Ginzburg–Landau coherence lengths with an increase of cross-plane ( ), trending towards two-dimensional superconductivity for . We show cross-overs between three regimes: metallic with proximity-enhanced coupling ( ), disordered-metallic with intermediate coupling ( ) and insulating with Josephson tunneling ( ). Our results demonstrate that stacking metal mono- and dichalcogenides allows to convert a metal/superconductor into an insulator/superconductor system, prospecting the control of two-dimensional superconductivity in embedded layers. -
Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,
f , used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel ) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenf and other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient and black-hole mass, (ii) marginal evidence for a similar correlation between and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with and , and (iv) marginal evidence for an anticorrelation of inclination angle with , , and . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, , and the virial coefficient, , and investigate how BLR properties might be related to line-profile shape usingcaramel models. -
Abstract This paper considers the Westervelt equation, one of the most widely used models in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of physical importance from time-trace boundary measurements. Specifically, these are the nonlinearity parameter
often referred to as in the acoustics literature and the wave speed . The determination of the spatial change in these quantities can be used as a means of imaging. We consider identifiability from one or two boundary measurements as relevant in these applications. For a reformulation of the problem in terms of the squared slowness and the combined coefficient we devise a frozen Newton method and prove its convergence. The effectiveness (and limitations) of this iterative scheme are demonstrated by numerical examples. -
Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuations
σ 8using the cluster abundance technique. We derive the MRR relation usingGalWCat19 , a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19 catalog, which we then use to set constraints on Ωmandσ 8. Utilizing the all-member MRR, we obtain constraints of Ωm= andσ 8= , and utilizing the red member MRR only, we obtain Ωm= andσ 8= . Our constraints on Ωmandσ 8are consistent and very competitive with the Planck 2018 results.