skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microlensing Discovery and Characterization Efficiency in the Vera C. Rubin Legacy Survey of Space and Time
Abstract The Vera C. Rubin Legacy Survey of Space and Time will discover thousands of microlensing events across the Milky Way, allowing for the study of populations of exoplanets, stars, and compact objects. We evaluate numerous survey strategies simulated in the Rubin Operation Simulations to assess the discovery and characterization efficiencies of microlensing events. We have implemented three metrics in the Rubin Metric Analysis Framework: a discovery metric and two characterization metrics, where one estimates how well the light curve is covered and the other quantifies how precisely event parameters can be determined. We also assess the characterizability of microlensing parallax, critical for detection of free-floating black hole lenses. We find that, given Rubin’s baseline cadence, the discovery and characterization efficiency will be higher for longer-duration and larger-parallax events. Microlensing discovery efficiency is dominated by the observing footprint, where more time spent looking at regions of high stellar density, including the Galactic bulge, Galactic plane, and Magellanic Clouds, leads to higher discovery and characterization rates. However, if the observations are stretched over too wide an area, including low-priority areas of the Galactic plane with fewer stars and higher extinction, event characterization suffers by >10%. This could impact exoplanet, binary star, and compact object events alike. We find that some rolling strategies (where Rubin focuses on a fraction of the sky in alternating years) in the Galactic bulge can lead to a 15%–20% decrease in microlensing parallax characterization, so rolling strategies should be chosen carefully to minimize losses.  more » « less
Award ID(s):
1909641
PAR ID:
10562053
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
276
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 10
Size(s):
Article No. 10
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many recent observational and theoretical studies suggest that globular clusters (GCs) host compact object populations large enough to play dominant roles in their overall dynamical evolution. Yet direct detection, particularly of black holes and neutron stars, remains rare and limited to special cases, such as when these objects reside in close binaries with bright companions. Here we examine the potential of microlensing detections to further constrain these dark populations. Based on state-of-the-art GC models from theCMC Cluster Catalog, we estimate the microlensing event rates for black holes, neutron stars, white dwarfs (WDs), and, for comparison, also for M dwarfs in Milky Way GCs, as well as the effects of different initial conditions on these rates. Among compact objects, we find that WDs dominate the microlensing rates, simply because they largely dominate by numbers. We show that microlensing detections are in general more likely in GCs with higher initial densities, especially in clusters that undergo core collapse. We also estimate microlensing rates in the specific cases of M22 and 47 Tuc using our best-fitting models for these GCs. Because their positions on the sky lie near the rich stellar backgrounds of the Galactic bulge and the Small Magellanic Cloud, respectively, these clusters are among the Galactic GCs best suited for dedicated microlensing surveys. The upcoming 10 yr survey with the Rubin Observatory may be ideal for detecting lensing events in GCs. 
    more » « less
  2. Abstract Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multiyear search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible northern sky every few nights. We discover 60 high-quality microlensing events in the 3 yr of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5.19 of our events are found outside of the Galactic plane (∣b∣ ≥ 10°), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda galaxy. We also record 1558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper data sets. 
    more » « less
  3. Nancy Grace Roman Space Telescope will revolutionize our understanding of the Galactic Bulge with its Galactic Bulge Time Domain survey. At the same time, Rubin Observatories's Legacy Survey of Space and Time (LSST) will monitor billions of stars in the Milky Way. The proposed Roman survey of the Galactic Plane, with its NIR passbands and exquisite spacial resolution, promises groundbreaking insights for a wide range of time-domain galactic astrophysics. In this white paper, we describe the scientific returns possible from the combination of the Roman Galactic Plane Survey with the data from LSST. 
    more » « less
  4. During the last 25 yr, hundreds of binary stars and planets have been discovered toward the Galactic bulge by microlensing surveys. Thanks to a new generation of large-sky surveys, it is now possible to regularly detect microlensing events across the entire sky. The OMEGA Key Projet at the Las Cumbres Observatory carries out automated follow-up observations of microlensing events alerted by these surveys with the aim of identifying and characterizing exoplanets as well as stellar remnants. In this study, we present the analysis of the binary lens event Gaia20bof. By automatically requesting additional observations, the OMEGA Key Project obtained dense time coverage of an anomaly near the peak of the event, allowing characterization of the lensing system. The observed anomaly in the lightcurve is due to a binary lens. However, several models can explain the observations. Spectroscopic observations indicate that the source is located at ≤2.0 kpc, in agreement with the parallax measurements from Gaia. While the models are currently degenerate, future observations, especially the Gaia astrometric time series as well as high-resolution imaging, will provide extra constraints to distinguish between them. 
    more » « less
  5. Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I  = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes. 
    more » « less