skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye
Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I  = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes.  more » « less
Award ID(s):
1908952
PAR ID:
10181131
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
633
ISSN:
0004-6361
Page Range / eLocation ID:
A98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with at a projected orbital separation au, and the host is a ∼1.1 M ⊙ turnoff star at ∼1.3 kpc. At , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner–outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius θ E but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less
  2. Context. Gravitational microlensing is a method that is used to discover planet-hosting systems at distances of several kiloparsec in the Galactic disk and bulge. We present the analysis of a microlensing event reported by the Gaia photometric alert team that might have a bright lens. Aims: In order to infer the mass and distance to the lensing system, the parallax measurement at the position of Gaia21blx was used. In this particular case, the source and the lens have comparable magnitudes and we cannot attribute the parallax measured by Gaia to the lens or source alone. Methods: Since the blending flux is important, we assumed that the Gaia parallax is the flux-weighted average of the parallaxes of the lens and source. Combining this assumption with the information from the microlensing models and the finite source effects we were able to resolve all degeneracies and thus obtained the mass, distance, luminosities and projected kinematics of the binary lens and the source. Results: According to the best model, the lens is a binary system at 2.18 ± 0.07 kpc from Earth. It is composed of a G star with 0.95 ± 0.17 M⊙ and a K star with 0.53 ± 0.07 M⊙. The source is likely to be an F subgiant star at 2.38 ± 1.71 kpc with a mass of 1.10 ± 0.18 M⊙. Both lenses and the source follow the kinematics of the thin-disk population. We also discuss alternative models, that are disfavored by the data or by prior expectations, however. 
    more » « less
  3. Abstract We report on the observations, analysis and interpretation of the microlensing event MOA-2019-BLG-008. The observed anomaly in the photometric light curve is best described through a binary lens model. In this model, the source did not cross caustics and no finite-source effects were observed. Therefore, the angular Einstein ring radius θ E cannot be measured from the light curve alone. However, the large event duration, t E ∼ 80 days, allows a precise measurement of the microlensing parallax π E . In addition to the constraints on the angular radius θ * and the apparent brightness I s of the source, we employ the Besançon and GalMod galactic models to estimate the physical properties of the lens. We find excellent agreement between the predictions of the two galactic models: the companion is likely a resident of the brown dwarf desert with a mass M p ∼ 30 M Jup , and the host is a main-sequence dwarf star. The lens lies along the line of sight to the Galactic bulge, at a distance of ≤4 kpc. We estimate that in about 10 yr the lens and source will be separated by ∼55 mas, and it will be possible to confirm the exact nature of the lensing system by using high-resolution imaging from ground- or space-based observatories. 
    more » « less
  4. Abstract We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M 1 = 170 − 50 + 40 M J and M 2 = 110 − 30 + 20 M J ), or well below ( M 1 = 22.5 − 0.4 + 0.7 M J and M 2 = 13.3 − 0.3 + 0.4 M J ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope. 
    more » « less
  5. Context.Identifying black holes is essential for our understanding of the development of stars and can reveal novel principles of physics. Gravitational microlensing provides an exceptional opportunity to examine an undetectable population of black holes in the Milky Way. In particular, long-lasting events are likely to be associated with massive lenses, including black holes. Aims.We present an analysis of the Gaia18ajz microlensing event reported by the Gaia Science Alerts system. Gaia18ajz is a long-timescale event exhibiting features indicative of the annual microlensing parallax effect. Our objective is to estimate its lens parameters based on the best-fitting model. Methods.We used photometric data obtained from the Gaia satellite and terrestrial observatories to investigate a variety of microlensing models and calculate the most probable mass and distance to the lens, taking into consideration a Galactic model as a prior. Subsequently, we applied a mass–brightness relation to evaluate the likelihood that the lens is a main sequence star. We also describe theDarkLensCode(DLC), an open-source routine that computes the distribution of probable lens mass, distance, and luminosity employing the Galaxy priors on stellar density and velocity for microlensing events with detected microlensing parallax. Results.We modelled the Gaia18ajz event and found its two possible models, the most probable Einstein timescales for which are 316−30+36days and 299−22+25days. Applying Galaxy priors for stellar density and motion, we calculated a most probable lens mass of 4.9−2.3+5.4 Mlocated at 1.14−0.57+0.75 kpc, and a less probably mass of 11.1−4.7+10.3 Mlocated at 1.31−0.60+0.80 kpc. Our analysis of the blended light suggests that the lens is likely a dark remnant of stellar evolution rather than a main sequence star. 
    more » « less