skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VLE-Based Phase Field Method to Simulate High-Pressure Diffuse Interface with Phase Change
Supercritical fluids, often present in modern high-performance propulsion systems, result from elevated operating pressures. When these systems utilize fluid mixtures as fuel or oxidizers, a transcritical effect often occurs. This effect can lead to misjudgments, as mixture critical points exceed those of individual components. Fluid mixing may induce phase separation, creating liquid and vapor phases due to the transcritical multi-component effect. Consequently, two-phase modeling is essential for transcritical and supercritical fluids. Traditional interface capturing methods, like Volume of Fluid (VOF) and Level Set (LS), present challenges such as computational expense and lack of conservatism. The Phase Field (PF) method, or the Diffuse Interface (DI) method which uses a phase fraction transport equation, emerges as a conservative alternative. Despite the absence of an initial interface in transcritical fluids, phase separation from mixing may form liquid droplets, necessitating multiphase modeling. To address these complexities, a Vapor-Liquid Equilibrium (VLE) model, coupled with the PR equation of state, is introduced. This model estimates phase fractions, liquid and vapor compositions, densities, and enthalpies through a flash problem solution. The conventional PF model is enhanced by replacing the phase fraction transport equation with VLE-derived values. The resulting VLE-based PF method is implemented into an OpenFOAM compressible solver, ensuring numerical stability with explicit phase field terms and a new CFL criterion. Test cases involve 1D interface convection and 2D droplet convection. In the 1D test, the VLE-based PF model adeptly captures interfaces, adjusting thickness as needed. The 2D droplet case, challenging due to a non-aligned Cartesian grid, exhibits uniform interface thickness and preserves droplet shape. The VLE-based PF model demonstrates versatility and reliability in capturing complex fluid behaviors, offering promising prospects for future research.  more » « less
Award ID(s):
2023932
PAR ID:
10562075
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Aeronautics and Astronautics
Date Published:
ISBN:
978-1-62410-711-5
Page Range / eLocation ID:
AIAA 2024-1635
Format(s):
Medium: X
Location:
Orlando, FL
Sponsoring Org:
National Science Foundation
More Like this
  1. To achieve high power density and thermodynamic cycle efficiency, the working pressures of liquid-propellant rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) are continuously increasing, which could reach or go beyond the thermodynamic critical pressure of the liquid propellant. For this reason, the studies of trans- and super-critical injection are getting more and more attention. However, the simulation of transcritical phase change is still a challenging topic. The phase boundary, especially near the mixture critical point, needs to be accurately determined to investigate the multicomponent effects on transcritical injection and atomization. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the mixture critical point. An \textit{in situ} adaptive tabulation (ISAT) method was developed to accelerate the computationally expensive multicomponent VLE computation such that it can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to develop a VLE-based CFD solver. In this work, shock-droplet interaction and two-phase mixing simulations are conducted using our new VLE-based CFD solver. The shock-droplet interaction simulation results capture the thermodynamic condition of the surface entering the supercritical state after shock passes through. The atomization of droplets could be triggered by vorticity formed at the droplets' surface. 2D temporal mixing layer simulations show the evolution of the transcritical mixing layer and capture the phase split effect at the mixing layer. 
    more » « less
  2. Vapor-liquid equilibrium (VLE) is a family of first-principled thermodynamic models for transcritical multiphase flows, which can accurately capture the phase transitions at high-pressure conditions that are difficult to deal with using other models. However, VLE-based computational fluid dynamics (CFD) simulation is computationally very expensive for multi-component systems, which severely limits its applications to real-world systems. In this work, we developed a new ISAT-VLE method based on the in situ adaptive tabulation (ISAT) method to improve the computational efficiency of VLE-based CFD simulation with reduced memory usage. We developed several ISAT-VLE solvers for both fully conservative (FC) and double flux (DF) schemes. New methods are proposed to delete redundant records in the ISAT-VLE table and the ISAT-VLE method performance is further improved. To improve the convergence of the VLE solvers, a modified initial guess for equilibrium constant is also introduced. Simulations of high-pressure transcritical two-phase temporal mixing layers and shock-droplet interaction were conducted using the ISAT-VLE CFD solvers. The simulation results show that the new method obtains a speed-up factor approximately from 10 to 60 and the ISAT errors can be controlled within 1%. The shock-droplet interaction results show that the DF scheme can achieve a higher speed-up factor than the FC scheme. The two sets of simulations exhibit the phase separation at high-pressure conditions. It was found that even at supercritical pressures with respect to each component, the droplet surface could still be in a subcritical two-phase state, because the mixture critical pressure is often significantly higher than each component and hence triggers phase separation. In addition, a shock wave could partially or completely convert the droplet surface from a subcritical two-phase state to a single-phase state by raising temperature and pressure. 
    more » « less
  3. null (Ed.)
    The studies of transcritical and supercritical flow have attracted much interest in the past 30 years. However, most of them mainly focus on the single-component system, whose critical point is constant. We use the vapor-liquid equilibrium (VLE) theory to capture the thermodynamic properties of the mixture and investigate transcritical flows (i.e., supercritical CO2 oxy-combustion systems). In sCO2 oxy-combustion systems, due to the presence of water from the previous cycles, the mixture critical point increases significantly, such that the phase separation could occur in both the compressor and combustor. However, the VLE solver increases the computation cost of fluid simulation significantly, which limited the size of simulations we can conduct. Naturally, tabulation methods can be used to store the VLE solutions to avoids redundant computation. However, the size of the VLE table increases exponentially with respect to the number of components. When the number of species components is greater than three, the size of the VLE table far exceeds the RAM’s limit in today’s standard computers. In this research, an online tabulation method based on In Situ Adaptive Tabulation (ISAT) is developed to accelerate the computation of multicomponent fluids based on VLE theory. Accuracy and efficiency are analyzed and discussed. The CFD solver used in this research is based on the Pressure-Implicit with Splitting of Operators (PISO) method. Peng-Robinson equation of state (EOS) is used in the calculations of phase equilibrium. 
    more » « less
  4. In this work, an artificial neural network (ANN) aided vapor–liquid equilibrium (VLE) model is developed and coupled with a fully compressible computational fluid dynamics (CFD) solver to simulate the transcritical processes occurring in high-pressure liquid-fueled propulsion systems. The ANN is trained in Python using TensorFlow, optimized for inference using Open Neural Network Exchange Runtime, and coupled with a C++ based CFD solver. This plug-and-play model/methodology can be used to convert any multi-component CFD solver to simulate transcritical processes using only open-source packages, without the need of in-house VLE model development. The solver is then used to study high-pressure transcritical shock-droplet interaction in both two- and four-component systems and a turbulent temporal mixing layer (TML), where both qualitative and quantitative agreement (maximum relative error less than 5%) is shown with respect to results based on both direct evaluation and the state-of-the-art in situ adaptive tabulation (ISAT) method. The ANN method showed a 6 times speed-up over the direct evaluation and a 2.2-time speed-up over the ISAT method for the two-component shock-droplet interaction case. The ANN method is faster than the ISAT method by 12 times for the four-component shock-droplet interaction. A 7 times speed-up is observed for the TML case for the ANN method compared to the ISAT method while achieving a data compression factor of 2881. The ANN method also shows intrinsic load balancing, unlike traditional VLE solvers. A strong parallel scalability of this ANN method with the number of processors was observed for all the three test cases. Code repository for 0D VLE solvers, and C++ ANN interface—https://github.com/UMN-CRFEL/ANN_VLE.git. 
    more » « less
  5. To achieve high performance, the working pressure of liquid-fueled rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) is continuously increasing, which could reach the thermodynamic critical pressure of the liquid fuel. For this reason, the studies of trans- and super-critical injection are getting more attention. However, most of the multiphase researches were mainly concentrated on single- or two-component systems, which cannot capture the multicomponent phase change in real high-pressure engines and gas turbines. The phase boundary, especially near the critical points, needs to be accurately determined to investigate the multicomponent effects in transcritical flow. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the critical points. An in situ adaptive tabulation (ISAT) method was developed to accelerate the computation of the VLE model such that the expensive multicomponent VLE calculation can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to build a VLE-based CFD solver. In this work, simulations are conducted using our new VLE-based CFD solver to reveal the phase change effects in transcritical flow. Specifically, shock-droplet interaction are investigated to reveal the shock-driven high pressure phase change. 
    more » « less