Abstract This work presents a method for the topology optimization of welded frame structures to minimize the manufacturing cost. The structures considered here consist of assemblies of geometric primitives such as bars and plates that are common in welded frame construction. A geometry projection technique is used to map the primitives onto a continuous density field that is subsequently used to interpolate material properties. As in density-based topology optimization techniques, the ensuing ersatz material is used to perform the structural analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design changes. The distinct advantage of the representation by geometric primitives is the ease of computation of the manufacturing cost in terms of the design parameters, while the geometry projection facilitates the analysis within a continuous design region. The proposed method is demonstrated via the manufacturing-cost-minimization subject to a displacement constraint of 2D bar, 3D bar, and plate structures.
more »
« less
This content will become publicly available on February 1, 2026
A geometry projection method for the topology optimization of additively manufactured variable-stiffness composite laminates
Continuous fiber fused filament fabrication (CF4) is a layer-by-layer additive manufacturing technique that deposits continuous fiber fused filaments (CFFFs) with a significant in-plane variation of the fiber trajectory, thereby offering great flexibility in fabricating variable-stiffness composite laminates (VSCLs). We introduce a topology optimization method for the design of additively manufactured VSCLs made of overlapping, fiber-reinforced bars. The proposed method is based on geometry projection (GP) techniques, whereby the bars are represented by high-level geometric primitives. As in other GP techniques, this high-level parameterization is mapped onto a fixed structured finite element mesh for conducting analysis, as in densitybased topology optimization techniques. However, unlike previous GP techniques that have demonstrated their applicability in designing structures as assemblies of individual fiberreinforced components, this work focuses on the design of composite structures that adhere to CF4 manufacturing processes. Therefore, we first formulate a material interpolation scheme that better captures the stiffness at the composite’s joints obtained from bar overlaps as a stack. Second, the proposed material interpolation employs composite laminate theory to capture the in-plane and out-of-plane behavior of the structure. Third, to produce designs that conform to the CF4 process, we also proposed a novel length constraint formulation in the form of penalization on the projection scheme, which ensures a minimum length for all the bars. This minimum length limit does not require adding a constraint to the optimization problem. The efficacy and efficiency of the proposed method are demonstrated by a series of compliance minimization problems with in-plane and/or out-of-plane loading. The methodology is also applied to the design of a displacement inverter compliant mechanism.
more »
« less
- Award ID(s):
- 1751211
- PAR ID:
- 10562172
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computer Methods in Applied Mechanics and Engineering
- Volume:
- 435
- Issue:
- C
- ISSN:
- 0045-7825
- Page Range / eLocation ID:
- 117663
- Subject(s) / Keyword(s):
- Topology optimization Geometry projection Continuous fiber-reinforced polymers Variable-stiffness laminates Fused filament fabrication
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed.more » « less
-
Geometry projection-based topology optimization has attracted a great deal of attention because it enables the design of structures consisting of a combination of geometric primitives and simplifies the integration with computer-aided design (CAD) systems. While the approach has undergone substantial development under the assumption of linear theory, it remains to be developed for non-linear hyperelastic problems. In this study, a geometrically non-linear explicit topology optimization approach is proposed in the framework of the geometry projection method. The energy transition strategy is adopted to mitigate excessive distortion in low-stiffness regions that might cause the equilibrium iterations to diverge. A neo-Hookean hyperelastic strain energy potential is used to model the material behavior. Design sensitivities of the functions passed to the gradient-based optimizer are detailed and verified. The proposed method is used to solve benchmark problems for which the output displacement in a compliant mechanism is maximized and the structural compliance is minimized.more » « less
-
Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites.more » « less
-
This paper proposes a density-based topology optimization scheme to design a heat sink for the application of a 3D integrated SIC-based 75 kVA Intelligent Power Stage (IPS). The heat sink design considers the heat conduction and convection effects with forced air cooling. The objective function is to minimize the thermal compliance of the whole structure. A volume constraint is imposed to reduce the overall volume of the designed heat sink to make it conformal to the underlying power devices. Some numerical techniques like filtering and projection schemes are employed to render a crisp design. Some 2D benchmarks examples are first provided to demonstrate the effectiveness of the proposed method. Then a 3D heat sink, especially designed for the 3D IPS, is topologically optimized. The classic tree-like structure is reproduced to reinforce the convection effect. Some comparisons with the intuitive baseline designs are made through numerical simulation. The optimized heat sinks are shown to provide a more efficient cooling performance for the 3D integrated power converter assembly.more » « less
An official website of the United States government
