The level set method has been widely applied in topology optimization of mechanical structures, primarily for linear materials, but its application to nonlinear hyperelastic materials, particularly for compliant mechanisms, remains largely unexplored. This paper addresses this gap by developing a comprehensive level set-based topology optimization framework specifically for designing compliant mechanisms using neo-Hookean hyperelastic materials. A key advantage of hyperelastic materials is their ability to undergo large, reversible deformations, making them well-suited for soft robotics and biomedical applications. However, existing nonlinear topology optimization studies using the level set method mainly focus on stiffness optimization and often rely on linear results as preliminary approximations. Our framework rigorously derives the shape sensitivity analysis using the adjoint method, including crucial higher-order displacement gradient terms often neglected in simplified approaches. By retaining these terms, we achieve more accurate boundary evolution during optimization, leading to improved convergence behavior and more effective structural designs. The proposed approach is first validated with a mean compliance problem as a benchmark, demonstrating its ability to generate optimized structural configurations while addressing the nonlinear behavior of hyperelastic materials. Subsequently, we extend the method to design a displacement inverter compliant mechanism that fully exploits the advantages of hyperelastic materials in achieving controlled large deformations. The resulting designs feature smooth boundaries and clear structural features that effectively leverage the material's nonlinear properties. This work provides a robust foundation for designing advanced compliant mechanisms with large deformation capabilities, extending the reach of topology optimization into new application domains where traditional linear approaches are insufficient. The developed methodology is expected to provide a timely solution to computational design for soft robotics, flexible mechanisms, and other emerging technologies that benefit from hyperelastic material properties.
more »
« less
This content will become publicly available on February 1, 2026
Geometrically non-linear topology optimization via geometry projection
Geometry projection-based topology optimization has attracted a great deal of attention because it enables the design of structures consisting of a combination of geometric primitives and simplifies the integration with computer-aided design (CAD) systems. While the approach has undergone substantial development under the assumption of linear theory, it remains to be developed for non-linear hyperelastic problems. In this study, a geometrically non-linear explicit topology optimization approach is proposed in the framework of the geometry projection method. The energy transition strategy is adopted to mitigate excessive distortion in low-stiffness regions that might cause the equilibrium iterations to diverge. A neo-Hookean hyperelastic strain energy potential is used to model the material behavior. Design sensitivities of the functions passed to the gradient-based optimizer are detailed and verified. The proposed method is used to solve benchmark problems for which the output displacement in a compliant mechanism is maximized and the structural compliance is minimized.
more »
« less
- Award ID(s):
- 1751211
- PAR ID:
- 10562171
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computer Methods in Applied Mechanics and Engineering
- Volume:
- 435
- Issue:
- C
- ISSN:
- 0045-7825
- Page Range / eLocation ID:
- 117636
- Subject(s) / Keyword(s):
- Geometry-based topology optimization Geometry projection method Geometrically non-linear structures Hyperelastic material behavior
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work presents a method for the topology optimization of welded frame structures to minimize the manufacturing cost. The structures considered here consist of assemblies of geometric primitives such as bars and plates that are common in welded frame construction. A geometry projection technique is used to map the primitives onto a continuous density field that is subsequently used to interpolate material properties. As in density-based topology optimization techniques, the ensuing ersatz material is used to perform the structural analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design changes. The distinct advantage of the representation by geometric primitives is the ease of computation of the manufacturing cost in terms of the design parameters, while the geometry projection facilitates the analysis within a continuous design region. The proposed method is demonstrated via the manufacturing-cost-minimization subject to a displacement constraint of 2D bar, 3D bar, and plate structures.more » « less
-
Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.more » « less
-
Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed.more » « less
-
This work presents a new method for efficiently designing loads and supports simultaneously with material distribution in density-based topology optimization. We use a higher-order or super-Gaussian function to parameterize the shapes, locations, and orientations of mechanical loads and supports. With a distance function as an input, the super-Gaussian function projects smooth geometric shapes which can be used to model various types of boundary conditions using minimal numbers of additional design variables. As examples, we use the proposed formulation to model both concentrated and distributed loads and supports. We also model movable non-design regions of predetermined solid shapes using the same distance functions and design variables as the variable boundary conditions. Computing the design sensitivities using the adjoint sensitivity analysis method, we implement the technique in a 2D topology optimization algorithm with linear elasticity and demonstrate the improvements that the super-Gaussian projection method makes to some common benchmark problems. By allowing the optimizer to move the loads and supports throughout the design domain, the method produces significant enhancements to structures such as compliant mechanisms where the locations of the input load and fixed supports have a large effect on the magnitude of the output displacements.more » « less
An official website of the United States government
