This paper presents a deep neural network (DNN)-and concurrent learning (CL)-based adaptive control architecture for an Euler-Lagrange dynamic system that guarantees system performance for the first time. The developed controller includes two DNNs with the same output-layer weights to ensure feasibility of the control system. In this work, a Lyapunov-and CL-based update law is developed to update the output-layer DNN weights in real-time; whereas, the inner-layer DNN weights are updated offline using data that is collected in real-time. A Lyapunov-like analysis is performed to prove that the proposed controller yields semi-global exponential convergence to an ultimate bound for the output-layer weight estimation errors and for the trajectory tracking errors.
more »
« less
This content will become publicly available on July 10, 2025
Augmentation of a Lyapunov-Based Deep Neural Network Controller with Concurrent Learning for Control-Affine Nonlinear Systems
A deep neural network (DNN)-based adaptive controller with a real-time and concurrent learning (CL)-based adaptive update law is developed for a class of uncertain, nonlinear dynamic systems. The DNN in the control law is used to approximate the uncertain nonlinear dynamic model. The inner-layer weights of the DNN are updated offline using data collected in real-time; whereas, the output-layer DNN weights are updated online (i.e., in real-time) using the Lyapunov- and CL-based adaptation law. Specifically, the inner-layer weights of the DNN are trained offline (concurrent to real-time execution) after a sufficient amount of data is collected in real-time to improve the performance of the system, and after training is completed the inner-layer DNN weights are updated in batch-updates. The key development in this work is that the output-layer DNN update law is augmented with CL-based terms to ensure that the output-layer DNN weight estimates converge to within a ball of their optimal values. A Lyapunov-based stability analysis is performed to ensure semi-global exponential convergence to an ultimate bound for the trajectory tracking errors and the output-layer DNN weight estimation errors.
more »
« less
- Award ID(s):
- 2230971
- PAR ID:
- 10562219
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-8265-5
- Page Range / eLocation ID:
- 2885 to 2890
- Subject(s) / Keyword(s):
- Nonlinear control Deep Neural Networks (DNNs) Concurrent Learning (CL) Lyapunov methods
- Format(s):
- Medium: X
- Location:
- Toronto, ON, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hybrid exoskeletons are used to blend the rehabilitative efficacy and mitigate the shortcomings of functional electrical stimulation (FES) and exoskeleton-based rehabilitative solutions. This paper introduces a novel nonlinear controller that may potentially improve the rehabilitative efficiency of a lower limb hybrid exoskeleton by implementing four key features into the FES and exoskeleton controllers. First, the FES input to the user’s muscles is saturated based on user preference to ensure user comfort. Second, rather than discarding the excess control effort from the saturated FES input, it is redirected into the exoskeleton’s motor controller. Third, a safe deep neural network (DNN) is designed to estimate the unknown dynamics of the hybrid exoskeleton and the DNN is implemented in the FES controller to improve the control efficiency and tracking performance. Fourth, an adaptive update law is designed to estimate the unknown muscle control effectiveness to facilitate the implementation of the DNN. Lyapunov stability-based methods are used to generate real-time adaptive update laws that will train the adaptive estimate of the muscle effectiveness and the output layer weights of the DNN in real-time, ensure the effectiveness and safety of the controllers, and prove global asymptotic tracking of the desired trajectory.more » « less
-
null (Ed.)Real-time adaptation is imperative to the control of robots operating in complex, dynamic environments. Adaptive control laws can endow even nonlinear systems with good trajectory tracking performance, provided that any uncertain dynamics terms are linearly parameterizable with known nonlinear features. However, it is often difficult to specify such features a priori, such as for aerodynamic disturbances on rotorcraft or interaction forces between a manipulator arm and various objects. In this paper, we turn to data-driven modeling with neural networks to learn, offline from past data, an adaptive controller with an internal parametric model of these nonlinear features. Our key insight is that we can better prepare the controller for deployment with control-oriented meta-learning of features in closed-loop simulation, rather than regression-oriented meta-learning of features to fit input-output data. Specifically, we meta-learn the adaptive controller with closed-loop tracking simulation as the base-learner and the average tracking error as the meta-objective. With a nonlinear planar rotorcraft subject to wind, we demonstrate that our adaptive controller outperforms other controllers trained with regression-oriented meta-learning when deployed in closed-loop for trajectory tracking control.more » « less
-
Abstract Periodic event‐triggered control (PETC) evaluates triggering conditions only at periodic sampling times, based on which it is decided whether the controller needs to be updated. This article investigates the global stabilization of nonlinear systems that are affected by external disturbances under PETC mechanisms. Sufficient conditions are provided to ensure the resulting closed‐loop system is input‐to‐state stable (ISS) for the state feedback and the observer‐based output feedback configurations separately. The sampling period and the triggering functions are chosen such that the ISS‐Lyapunov function of continuous dynamics is also the ISS‐Lyapunov function of the overall system. Based on that, sufficient conditions in the form of linear matrix inequalities are provided for the PETC design of incrementally quadratic nonlinear systems. Two simulation examples are provided to illustrate the effectiveness of the proposed method.more » « less
-
reveal the mechanism of intermittent coupling, where the nodes are connected merely in discontinuous time durations. Instead of the common weighted average technique, by proposing a direct error method and constructing piecewise Lyapunov functions, several intermittently adaptive designs are developed to update the complex-valued coupling weights. Especially, an adaptive pinning protocol is designed for ICCVNs with heterogeneous coupling weights and the synchronization is ensured by piecewise adjusting the complex-valued weights of edges within a spanning tree. For ICCVNs with homogeneous coupling weights, based on a connected dominating set, an intermittently adaptive algorithm is developed which just depends on the information of the dominating set with their neighbors. At the end, the established theoretical results are verified by providing two numerical examples.more » « less