Abstract Conserving species' ability to traverse the landscape is vital for maintaining biodiversity in the face of global change. Connectivity conservation requires identifying important pathways for species' movements and aligning societal support for conservation of those pathways. Contemporary connectivity analyses emphasize the impacts of topography, vegetation and human footprint on species' movements; but largely ignore the role that attitudes, economics and institutions play in practitioners' ability to conserve those movements.We introduce implementation resistance as an analogue of biophysical resistance that combines social, economic and institutional factors that promote or impede connectivity conservation. We demonstrate the utility of integrating implementation resistance as a means of choosing between competing connectivity conservation strategies using wolves in Colorado (USA) as a case study.Our analysis of five potential corridor locations based on biophysical costs revealed substantial differences in the social costs associated with implementing each corridor despite relatively minimal differences in the biophysical costs.Our comparison of hypothetical interventions to reduce implementation resistance illustrates that interventions that reduce conflicts between land use and wolves may substantially reduce overall resistance, those reductions are not as well aligned with connectivity priorities as those resulting from changes in land management agency policy.Our results highlight the need to design conservation interventions that fit both the social and ecological landscape and provide a framework for developing robust, interdisciplinary methods that facilitate implementable connectivity conservation. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
Sustainable lake restoration: From challenges to solutions
Abstract Sustainable management of lakes requires us to overcome ecological, economic, and social challenges. These challenges can be addressed by focusing on achieving ecological improvement within a multifaceted, co‐beneficial context. In‐lake restoration measures may promote more rapid ecosystem responses than is feasible with catchment measures alone, even if multiple interventions are needed. In particular, we identify restoration methods that support the overarching societal target of a circular economy through the use of nutrients, sediments, or biomass that are removed from a lake, in agriculture, as food, or for biogas production. In this emerging field of sustainable restoration techniques, we show examples, discuss benefits and pitfalls, and flag areas for further research and development. Each lake should be assessed individually to ensure that restoration approaches will effectively address lake‐specific problems, do not harm the target lake or downstream ecosystems, are cost‐effective, promote delivery of valuable ecosystem services, minimize conflicts in public interests, and eliminate the necessity for repeated interventions. Achieving optimal, sustainable results from lake restoration relies on multidisciplinary research and close interactions between environmental, social, political, and economic sectors. This article is categorized under:Science of Water > Water QualityWater and Life > Stresses and Pressures on EcosystemsWater and Life > Conservation, Management, and Awareness
more »
« less
- Award ID(s):
- 2108917
- PAR ID:
- 10562282
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- WIREs Water
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2049-1948
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.more » « less
-
Abstract The high‐mountain system, a storehouse of major waterways that support important ecosystem services to about 1.5 billion people in the Himalaya, is facing unprecedented challenges due to climate change during the 21st century. Intensified floods, accelerating glacial retreat, rapid permafrost degradation, and prolonged droughts are altering the natural hydrological balances and generating unpredictable spatial and temporal distributions of water availability. Anthropogenic activities are adding further pressure onto Himalayan waterways. The fundamental question of waterway management in this region is therefore how this hydro‐meteorological transformation, caused by climate change and anthropogenic perturbations, can be tackled to find avenues for sustainability. This requires a framework that can diagnose threats at a range of spatial and temporal scales and provide recommendations for strong adaptive measures for sustainable future waterways. This focus paper assesses the current literature base to bring together our understanding of how recent climatic changes have threatened waterways in the Asian Himalayas, how society has been responding to rapidly changing waterway conditions, and what adaptive options are available for the region. The study finds that Himalayan waterways are crucial in protecting nature and society. The implementation of integrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of waterways are more critical than ever. This article is categorized under:Engineering Water > Sustainable Engineering of Watermore » « less
-
Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.more » « less
-
Abstract BackgroundCombined impacts from anthropogenic pressures and climate change threaten coastal ecosystems and their capacity to protect communities from hazards. One approach towards improving coastal protection is to implement “nature-based solutions” (NBS), which are actions working with nature to benefit nature and humans. Despite recent increases in global implementation of NBS projects for coastal protection, substantial gaps exist in our understanding of NBS performance. To help fill this gap, we systematically mapped the global evidence base on the ecological, physical, economic, and social performance of NBS interventions related to coastal protection. We focused on active NBS interventions, such as restoring or creating habitat, adding structure, or modifying sediment in six shallow biogenic ecosystems: salt marsh, seagrass, kelp forest, mangrove, coral reef, and shellfish reef. MethodsWe identified potentially relevant articles on the performance of NBS for coastal protection using predefined and tested search strategies across two indexing platforms, one bibliographic database, two open discovery citation indexes, one web-based search engine, and a novel literature discovery tool. We also searched 45 organizational websites for literature and solicited literature from 66 subject matter experts. Potentially relevant articles were deduplicated and then screened by title and abstract with assistance from a machine learning algorithm. Following title and abstract screening, we conducted full text screening, extracted relevant metadata into a predefined codebook, and analyzed the evidence base to determine the distribution and abundance of evidence and answer our research questions on NBS performance. ResultsOur search captured > 37,000 articles, of which 252 met our eligibility criteria for relevance to NBS performance for coastal protection and were included in the systematic map. Evidence stemmed from 31 countries and increased from the 1980s through the 2020s. Active NBS interventions for coastal protection were most often implemented in salt marshes (45%), mangrove forests (26%), and shellfish reefs (20%), whereas there were fewer NBS studies in seagrass meadows (4%), coral reefs (4%), or kelp beds (< 1%). Performance evaluations of NBS were typically conducted using observational or experimental methods at local spatial scales and over short temporal scales (< 1 year to 5 years). Evidence clusters existed for several types of NBS interventions, including restoration and addition of structures (e.g., those consisting of artificial, hybrid, or natural materials), yet evidence gaps existed for NBS interventions like alteration of invasive species. Evaluations of NBS performance commonly focused on ecological (e.g., species and population, habitat, community) and physical (e.g., waves, sediment and morphology) outcomes, whereas pronounced evidence gaps existed for economic (e.g., living standards, capital) and social (e.g., basic infrastructure, health) outcomes. ConclusionsThis systematic map highlights evidence clusters and evidence gaps related to the performance of active NBS interventions for coastal protection in shallow, biogenic ecosystems. The synthesized evidence base will help guide future research and management of NBS for coastal protection so that active interventions can be designed, sited, constructed, monitored, and adaptively managed to maximize co-benefits. Promising avenues for future research and management initiatives include implementing broad-scale spatial and temporal monitoring of NBS in multidisciplinary teams to examine not only ecological and physical outcomes but also economic and social outcomes, as well as conducting further synthesis on evidence clusters that may reveal measures of effect for specific NBS interventions. Since NBS can deliver multiple benefits, measuring a diverse suite of response variables, especially those related to ecosystem function, as well as social and economic responses, may help justify and improve societal benefits of NBS. Such an approach can help ensure that NBS can be strategically harnessed and managed to meet coastal protection goals and provide co-benefits for nature and people.more » « less
An official website of the United States government

