Abstract We report the experimental demonstration of temperature compensated bilayer graphene two‐dimensional (2D) nanomechanical resonators operating in temperature range of 300 to 480 K. By using both microspectroscopy and scanning spectromicroscopy techniques, spatially visualized undriven thermomechanical motion is conveniently used to monitor both the resonance frequency and temperature of the device via noise thermometry while the device is photothermally agitated. Thanks to engineerable naturally integrated temperature compensation of the graphene and gold clamps that minimize variations of built‐in tension in a wide temperature range, very small linear TCfs of ≈−39 and −84 ppm K−1are achieved in the graphene nanomechanical resonators. The measured TCfs are orders of magnitude smaller than those in other 2D resonant nanoelectromechanical systems (NEMS). The intricately coupled thermal tuning and strain effects are further examined, elucidating that TCfcan be further improved by optimizing device dimensions, which can be exploited for engineering highly stable NEMS resonators and oscillators for signal transduction and sensing applications. 
                        more » 
                        « less   
                    
                            
                            Nonlinear coupling of closely spaced modes in atomically thin MoS2 nanoelectromechanical resonators
                        
                    
    
            Abstract Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS2) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension. We employ method of averaging to solve the equations of coupled modes and extract an expression for the nonlinear coupling coefficient (λ) in closed form. Undriven thermomechanical noise spectral measurements are used to calibrate the vibration amplitude of mode 2 (a2) in the displacement domain. We drive mode 2 near its natural frequency and measure the shifted resonance frequency of mode 1 (f1s) resulting from the dispersive coupling. Our model yieldsλ = 0.027 ± 0.005 pm−2 · μs−2from thermomechanical noise measurement of mode 1. Our model also captures an anomalous frequency shift of the undriven mode 1 due to nonlinear coupling to the driven mode 2 mediated by large dynamic tension. This study provides a direct means to quantifyingλby measuring the thermomechanical noise in NEMS and will be valuable for understanding nonlinear mode coupling in emerging resonant systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2326528
- PAR ID:
- 10562336
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Microsystems & Nanoengineering
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2055-7434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade. Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a clamped–clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems.more » « less
- 
            Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.more » « less
- 
            Nanoelectromechanical systems (NEMS) enabled by two-dimensional (2D) magnetic materials are promising candidates for exploring ultrasensitive detection and magnetostrictive phenomena, thanks to their high mechanical stiffness, high strength, and ultralow mass. The resonance modes of such vibrating membrane NEMS can be probed optically and also manipulated mechanically via electrostatically induced strain. Electrostatic frequency tuning of 2D magnetic NEMS resonators is, thus, an important means of investigating magneto-mechanical coupling mechanisms. Toward realizing magneto-mechanical coupled devices, we build circular drumhead iron phosphorus trisulfide (FePS3) NEMS resonators with different diameters (3–7 μm). Here, we report on experimental demonstration of tunable antiferromagnet FePS3 drumhead resonators with the highest fractional frequency tuning range up to Δf/f0 = 32%. Combining experimental results and analytical modeling of the resonance frequency scaling, we attain quantitative understanding of the elastic behavior of FePS3, including the transition from “membrane” to “plate” regime, with built-in tension (γ) ranging from 0.1 to 2 N/m. This study not only offers methods for investigating mechanical properties of ultrathin membranes of magnetic 2D materials but also provides important guidelines for designing future high-performance magnetic NEMS resonators.more » « less
- 
            The gravity-induced depth-dependent elastic properties of a granular half-space result in multiple dispersive surface modes and demand the consideration of material heterogeneity in metabarrier designs to suppress surface waves. Numerous locally resonant metabarrier configurations have been proposed in the literature to suppress Rayleigh surface waves in homogeneous media, with little focus on extending the designs to a heterogeneous half-space. In this work, a metabarrier comprising partially embedded rod-like resonators to suppress the fundamental dispersive surface wave modes in heterogeneous granular media known as first order PSV (PSV1; where P is the longitudinal mode and SV is the shear-vertical mode) and second order PSV (PSV2) is proposed. The unit-cell dispersion analysis, together with an extensive frequency-domain finite element analysis, reveals preferential hybridization of the PSV1 and PSV2 modes with the longitudinal and flexural resonances of the resonators, respectively. The presence of the cutoff frequency for the longitudinal-resonance hybridized mode facilitates straightforward suppression of the PSV1 mode, while PSV2 mode suppression is possible by tailoring the hybridized flexural resonance modes. These PSV1 and PSV2 bandgaps are realized experimentally in a granular testbed comprising glass beads by embedding 3D-printed resonator rods. Also explored are novel graded metabarriers capable of suppressing both PSV1 and PSV2 modes over a broad frequency range for potential applications in vibration control and seismic isolation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
