ABSTRACT We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below $${\sim 200\, \text{pc}}$$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($$\sim 500\, \text{Myr}$$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $$\lesssim 20{{\rm per \,cent}}$$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $$\gt 10^9\, {\rm M}_\odot$$. With the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $$\gtrsim 60\,{\rm{per\,cent}}$$ seed-seed mergers, $$\sim 30\,{\rm{per\,cent}}$$ involving only one seed-mass MBH, and $$\sim 10\,{\rm{per\,cent}}$$ mergers of non-seed MBHs. 
                        more » 
                        « less   
                    
                            
                            Massive Black Hole Binaries from the TNG50-3 Simulation. II. Using Dual AGNs to Predict the Rate of Black Hole Mergers
                        
                    
    
            Abstract Dual active galaxy nuclei (dAGNs) trace the population of post-merger galaxies and are the precursors to massive black hole (MBH) mergers, an important source of gravitational waves that may be observed by the Laser Interferometer Space Antenna (LISA). In Paper I of this series, we used the population of ≈2000 galaxy mergers predicted by the TNG50-3 simulation to seed semi-analytic models of the orbital evolution and coalescence of MBH pairs with initial separations of ≈1 kpc. Here, we calculate the dAGN luminosities and separations of these pairs as they evolve in post-merger galaxies, and show how the coalescence fraction of dAGNs changes with redshift. We find that because of the several gigayear-long dynamical friction timescale for orbital evolution, the fraction of dAGNs that eventually end in an MBH merger grows with redshift and exceeds 50% beyondzdAGN≈ 1. Dual AGNs in galaxies with bulge masses ≲1010M⊙, or consisting of near-equal-mass MBHs, evolve more quickly and have higher than average coalescence fractions. At any redshift, dAGNs observed with small separations (≲0.7 kpc) have a higher probability of merging beforez= 0 than more widely separated systems. Radiation feedback effects can significantly reduce the number of MBH mergers, and this could be manifested as a larger than expected number of widely separated dAGNs. We present a method to estimate the MBH coalescence rate as well as the potential LISA detection rate given a survey of dAGNs. Comparing these rates to the eventual LISA measurements will help determine the efficiency of dynamical friction in post-merger galaxies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1908042
- PAR ID:
- 10562354
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 959
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We evaluate the cosmological coalescence and detection rates for massive black hole (MBH) binaries targeted by the gravitational wave observatory Laser Interferometer Space Antenna (LISA). Our calculation starts with a population of gravitationally unbound MBH pairs, drawn from the TNG50-3 cosmological simulation, and follows their orbital evolution from kiloparsec scales all the way to coalescence using a semi-analytic model developed in our previous work. We find that for the majority of MBH pairs that coalesce within a Hubble time dynamical friction is the most important mechanism that determines their coalescence rate. Our model predicts an MBH coalescence rate ≲0.45 yr −1 and a LISA detection rate ≲0.34 yr −1 . Most LISA detections should originate from 10 6 to 10 6.8 M ⊙ MBHs in gas-rich galaxies at redshifts 1.6 ≤ z ≤ 2.4 and have a characteristic signal-to-noise ratio S/N ∼100. We however find a dramatic reduction in the coalescence and detection rates, as well as the average S/N, if the effects of radiative feedback from accreting MBHs are taken into account. In this case, the MBH coalescence rate is reduced by 78% (to ≲0.1 yr −1 ), and the LISA detection rate is reduced by 94% (to 0.02 yr −1 ), whereas the average S/N is ∼10. We emphasize that our model provides a conservative estimate of the LISA detection rates, due to the limited MBH mass range in TNG50-3, consistent with other works in the literature that draw their MBH pairs from cosmological simulations.more » « less
- 
            Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 914 ± 0 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M⊙, at least 10 times lower than its host galaxy’s central black hole mass (≳108M⊙). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M⊙). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass.more » « less
- 
            null (Ed.)ABSTRACT Massive black hole (MBH) binary inspiral time-scales are uncertain, and their spins are even more poorly constrained. Spin misalignment introduces asymmetry in the gravitational radiation, which imparts a recoil kick to the merged MBH. Understanding how MBH binary spins evolve is crucial for determining their recoil velocities, their gravitational wave (GW) waveforms detectable with Laser Interferometer Space Antenna, and their retention rate in galaxies. Here, we introduce a sub-resolution model for gas- and gravitational wave (GW)-driven MBH binary spin evolution using accreting MBHs from the Illustris cosmological hydrodynamic simulations. We also model binary inspiral via dynamical friction, stellar scattering, viscous gas drag, and GW emission. Our model assumes that the circumbinary disc always removes angular momentum from the binary. It also assumes differential accretion, which causes greater alignment of the secondary MBH spin in unequal-mass mergers. We find that 47 per cent of the MBHs in our population merge by z = 0. Of these, 19 per cent have misaligned primaries and 10 per cent have misaligned secondaries at the time of merger in our fiducial model with initial eccentricity of 0.6 and accretion rates from Illustris. The MBH misalignment fraction depends strongly on the accretion disc parameters, however. Reducing accretion rates by a factor of 100, in a thicker disc, yields 79 and 42 per cent misalignment for primaries and secondaries, respectively. Even in the more conservative fiducial model, more than 12 per cent of binaries experience recoils of >500 km s−1, which could displace them at least temporarily from galactic nuclei. We additionally find that a significant number of systems experience strong precession.more » « less
- 
            Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M⊙) and high-mass (5 × 109<M*< 1011M⊙) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    