Vegetation influences climate by altering water and energy budgets. With intensifying threats from anthropogenic activities, both terrestrial biomes and climate are expected to change, and the need to understand land–atmosphere interactions will become increasingly crucial. We ran a climate model coupled with a Dynamic Global Vegetation Model (DGVM) to investigate the establishment of terrestrial biomes starting from a bareground scenario and how these biomes influence the climate throughout their evolution. Vegetation reaches quasi-equilibrium after ~350 years, and the vegetation establishment results in global increases in temperature (~2.5 °C), precipitation (~5.5%) and evapotranspiration as well as declines in albedo and sea ice volumes. In high latitude regions, vegetation establishment decreases albedo, causing an increase in global temperatures as well as a northward shift of the Intertropical Convergence Zone (ITCZ). Low latitude tropical afforestation results in greater evapotranspiration and precipitation, and an initial decrease in temperatures due to evaporative cooling.
more »
« less
Threshold Changes in Winter Temperature and Precipitation Drive Threshold Responses Across Nine Global Climate Zones and Associated Biomes
Globally, winter temperatures are rising, and snowpack is shrinking or disappearing entirely. Despite previous research and published literature reviews, it remains unknown whether biomes across the globe will cross important thresholds in winter temperature and precipitation that will lead to significant ecological changes. Here, we combine the widely used Köppen–Geiger climate classification system with worst-case-scenario projected changes in global monthly temperature and precipitation to illustrate how multiple climatic zones across Earth may experience shifting winter conditions by the end of this century. We then examine how these shifts may affect ecosystems within corresponding biomes. Our analysis demonstrates potential widespread losses of extreme cold (<−20°C) in Arctic, boreal, and cool temperate regions. We also show the possible disappearance of freezing temperatures (<0°C) and large decreases in snowfall in warm temperate and dryland areas. We identify important and potentially irreversible ecological changes associated with crossing these winter climate thresholds.
more »
« less
- PAR ID:
- 10562420
- Editor(s):
- Gallagher, Richard; Futuyma, Douglas J
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Ecology, Evolution, and Systematics
- Volume:
- 55
- Issue:
- 1
- ISSN:
- 1543-592X
- Page Range / eLocation ID:
- 271 to 300
- Subject(s) / Keyword(s):
- climate change temperature precipitation threshold Koppen-Geiger global biomes
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Ecosystem states are often influenced by both concurrent and antecedent environmental drivers. However, the relative importance of antecedent conditions varies within and among ecosystems. Here, we analysed long‐term depth‐profile data from 382 temperate lakes across 10 countries to assess how differential changes in spring versus summer air temperature mediate summer water quality. We found that summer bottom‐water conditions were more associated with spring air temperatures, while surface‐water conditions were more associated with summer air temperatures. The relative influence of spring versus summer air temperature was mediated by lake morphometry, stratification and latitude. Across these lakes, summer air temperatures have increased more rapidly than spring air temperatures, potentially contributing to a growing thermal difference between surface and bottom waters (median = +0.5°C/decade). Consequently, our results demonstrate that predicting the ecological impacts of climate change may require considering spatial differences in ecological memory within ecosystems.more » « less
-
Northeastern US temperate forests are currently net carbon (C) sinks and play an important role offsetting anthropogenic C emissions, but projected climatic changes, including increased temperatures and decreased winter snowpack, may influence this C sink over the next century. Past studies show that growing season warming increases forest C storage through greater soil nutrient availability that contributes to greater rates of net photosynthesis, while reduced winter snowpack induces soil freeze/thaw cycles that reduce tree root vitality, nutrient uptake, and forest C storage. The year-round effects of climate change on this C sink are not well understood. We report here decade-long results from the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest, which determines the combined effects of growing season warming and a smaller winter snowpack on C storage in northern temperate forests. We found after a decade of treatments that growing season warming increases cumulative tree stem biomass C by 63%. However, winter soil freeze/thaw cycles offset half of this growing season warming effect. The amount of C stored in stem biomass of trees experiencing both growing season warming plus smaller winter snowpack is only 31% higher than the reference plots, but this difference is not significant. Our results suggest that current Earth system models are likely to overestimate the C sink capacity of northern temperate forests because they do not incorporate the negative impacts of a shrinking snowpack and increased frequency of soil freeze/thaw cycles on C uptake and storage by trees.more » « less
-
Synopsis Wind can significantly influence heat and water exchange between organisms and their environment, yet microclimatic variation in wind is often overlooked in models forecasting the effects of environmental change on organismal performance. Accounting for the effects of wind may become even more critical given the anticipated changes in wind speed across the planet as climates continue to warm. In this study, we first assessed how wind speed varies across the planet and how wind speed may change under climate warming at macroclimatic scales. We also used microclimatic data to assess how wind speed changes temporally throughout the day and year as well as the relationship between wind speed, temperature, and standard deviation in each environmental variable using data from weather stations in North America. Finally, we used a suite of biophysical simulations to understand how wind speed (and its interactions with other environmental variables and organismal traits) affects the temperatures and rates of water loss that plants and animals experience at a microclimatic scale. We found substantial latitudinal variation in wind speed and the change in wind speed under climate change, demonstrating that temperate regions are predicted to experience simultaneous warming and reductions in wind speed. From the microclimatic data, we also found that wind speed is positively associated with temperature and temperature variability, indicating that the effects of wind speed may become more challenging to predict under future warming scenarios. The biophysical simulations demonstrated that convective and evaporative cooling from wind interacts strongly with organismal traits (such as body size, solar absorptance, and conductance) and the heating effects of solar radiation to shape heat and water fluxes in terrestrial plants and animals. In many cases, the effect of wind (or its interaction with other variables) was comparable to the effects of air temperature or solar radiation. Understanding these effects will be important for predicting the ecological impacts of climate change and for explaining clinal variation in traits that have evolved across a range of thermal environments.more » « less
-
Increasing summer temperatures and higher probabilities of extreme heat events have led to concerns about tree damage and mortality. However, insufficient attention has been given to conditions leading to heat-related regeneration failures in temperate forests. To address this, managers need to understand how microclimate varies under a range of overstory conditions. We measured air temperatures at 2 cm above-ground underneath a gradient of canopy cover on south-facing slopes in recently thinned Douglas-fir stands in western Oregon, USA. To expand the ecological relevance of these data to impacts on regeneration, we created the stress degree hours (SDH) metric, representing the amount of time—and by how much—temperatures exceeded biologically relevant stress thresholds. Overall, for every 10% increase in canopy cover, maximum temperatures at 2 cm were 1.3 °C lower, the odds of temperatures exceeding stress thresholds for conifer regeneration declined by a multiplicative factor of 0.26, and the total of SDH decreased by 40%. These reductions are large enough to be worthy of attention when managing for tree regeneration. However, data collected during the Pacific Northwest Heat Dome in June 2021 indicate that with various climate change scenarios and heatwave occurrences, temperatures will be unfavorable for regeneration regardless of overstory cover.more » « less
An official website of the United States government

