skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Forest carbon uptake as influenced by snowpack and length of photosynthesis season in seasonally snow-covered forests of North America
Award ID(s):
1926090 1929709 2224545 1655499
PAR ID:
10562431
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier, Agricultural and Forest Meteorology
Date Published:
Journal Name:
Agricultural and Forest Meteorology
Volume:
353
Issue:
C
ISSN:
0168-1923
Page Range / eLocation ID:
110054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    A unified approach to the determination of eigenvalues and eigenvectors of specific matrices associated with directed graphs is presented. Matrices studied include the new distance matrix, with natural extensions to the distance Laplacian and distance signless Laplacian, in addition to the new adjacency matrix, with natural extensions to the Laplacian and signless Laplacian. Various sums of Kronecker products of nonnegative matrices are introduced to model the Cartesian and lexicographic products of digraphs. The Jordan canonical form is applied extensively to the analysis of spectra and eigenvectors. The analysis shows that Cartesian products provide a method for building infinite families of transmission regular digraphs with few distinct distance eigenvalues. 
    more » « less