We present the design, implementation, and evaluation of FineIBT: a CFI enforcement mechanism that improves the precision of hardware-assisted CFI solutions, like Intel IBT, by instrumenting program code to reduce the valid/allowed targets of indirect forward-edge transfers. We study the design of FineIBT on the x86-64 architecture, and implement and evaluate it on Linux and the LLVM toolchain. We designed FineIBT’s instrumentation to be compact, incurring low runtime and memory overheads, and generic, so as to support different CFI policies. Our prototype implementation incurs negligible runtime slowdowns (≈ 0%–1.94% in SPEC CPU2017 and ≈ 0%–1.92% in real-world applications) outperforming Clang-CFI. Lastly, we investigate the effectiveness/security and compatibility of FineIBT using the ConFIRM CFI benchmarking suite, demonstrating that our instrumentation provides complete coverage in the presence of modern software features, while supporting a wide range of CFI policies with the same, predictable performance.
more »
« less
Kaleidoscope: Precise Invariant-Guided Pointer Analysis
Pointer analysis techniques are crucial for many software security mitigation approaches. However, these techniques suffer from imprecision; hence, the reported points-to sets are a superset of the actual points-to sets that can possibly form during program execution. To improve the precision of pointer analysis techniques, we propose Kaleidoscope. By using an invariant-guided optimistic (IGO) pointer analysis approach, Kaleidoscope makes optimistic assumptions during the pointer analysis that it later validates at runtime. If these optimistic assumptions do not hold true at runtime, Kaleidoscope falls back to an imprecise baseline analysis, thus preserving soundness. We show that Kaleidoscope reduces the average points-to set size by 13.15× across a set of 9 applications over the current state-of-the-art pointer analysis framework. Furthermore, we demonstrate how Kaleidoscope can implement control flow integrity (CFI) to increase the security of traditional CFI policies.
more »
« less
- PAR ID:
- 10562442
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703867
- Page Range / eLocation ID:
- 561 to 576
- Format(s):
- Medium: X
- Location:
- La Jolla CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deeply embedded systems powered by microcontrollers are becoming popular with the emergence of Internet-of-Things (IoT) technology. However, these devices primarily run C/C\({+}{+}\)code and are susceptible to memory bugs, which can potentially lead to both control data attacks and non-control data attacks. Existing defense mechanisms (such as control-flow integrity (CFI), dataflow integrity (DFI) and write integrity testing (WIT), etc.) consume a massive amount of resources, making them less practical in real products. To make it lightweight, we design a bitmap-based allowlist mechanism to unify the storage of the runtime data for protecting both control data and non-control data. The memory requirements are constant and small, regardless of the number of deployed defense mechanisms. We store the allowlist in the TrustZone to ensure its integrity and confidentiality. Meanwhile, we perform an offline analysis to detect potential collisions and make corresponding adjustments when it happens. We have implemented our idea on an ARM Cortex-M-based development board. Our evaluation results show a substantial reduction in memory consumption when deploying the proposed CFI and DFI mechanisms, without compromising runtime performance. Specifically, our prototype enforces CFI and DFI at a cost of just 2.09% performance overhead and 32.56% memory overhead on average.more » « less
-
Møller, Anders; Sridharan, Manu (Ed.)Static analysis tools typically address the problem of excessive false positives by requiring programmers to explicitly annotate their code. However, when faced with incomplete annotations, many analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs, we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual null-pointer analysis for a core imperative language, we build a prototype using the Infer static analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in which the gradualization approach used to derive the gradual analysis from its static counterpart can be extended to support more domains. This work thus provides a basis for future analysis tools that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the number of reported false positives.more » « less
-
Static analysis tools typically address the problem of excessive false positives by requiring programmers to explicitly annotate their code. However, when faced with incomplete annotations, many analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs, we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual null-pointer analysis for a core imperative language, we build a prototype using the Infer static analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in which the gradualization approach used to derive the gradual analysis from its static counterpart can be extended to support more domains. This work thus provides a basis for future analysis tools that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the number of reported false positives.more » « less
-
We present a new approach to static analysis for security vetting of Android apps and a general framework called Amandroid. Amandroid determines points-to information for all objects in an Android app component in a flow and context-sensitive (user-configurable) way and performs data flow and data dependence analysis for the component. Amandroid also tracks inter-component communication activities. It can stitch the component-level information into the app-level information to perform intra-app or inter-app analysis. In this article, (a) we show that the aforementioned type of comprehensive app analysis is completely feasible in terms of computing resources with modern hardware, (b) we demonstrate that one can easily leverage the results from this general analysis to build various types of specialized security analyses—in many cases the amount of additional coding needed is around 100 lines of code, and (c) the result of those specialized analyses leveraging Amandroid is at least on par and often exceeds prior works designed for the specific problems, which we demonstrate by comparing Amandroid’s results with those of prior works whenever we can obtain the executable of those tools. Since Amandroid’s analysis directly handles inter-component control and data flows, it can be used to address security problems that result from interactions among multiple components from either the same or different apps. Amandroid’s analysis is sound in that it can provide assurance of the absence of the specified security problems in an app with well-specified and reasonable assumptions on Android runtime system and its library.more » « less
An official website of the United States government

