Pre-dispersal seed mortality caused by premature fruit drop is a potentially important source of plant mortality, but one which has rarely been studied in the context of tropical forest plants. Of particular interest is premature fruit drop triggered by enemies, which – if density-dependent – could contribute to species co-existence in tropical forest plant communities.  We used a long-term (31 year) dataset on seed and fruit fall obtained through weekly collections from a network of seed traps in a lowland tropical forest (Barro Colorado Island, Panama) to estimate the proportion of seeds prematurely abscised for 201 woody plant species. To determine whether enemy attack might contribute to premature fruit drop we tested whether plant species abscise more of their fruit prematurely if they: (1) have attributes hypothesised to be associated with high levels of enemy attack, and (2) are known to be attacked by one enemy-group (insect seed predators). We also tested (3) whether mean rates of premature fruit drop for plant species are phylogenetically conserved. Overall rates of premature fruit drop were high in the plant community. Across all species, 39% of seeds were abscised before completing their development. Rates of premature seed abscission varied considerably among species and could not be explained by phylogeny. Premature seed abscission rates were higher in species which are known to host pre-dispersal insect seed predators and species with attributes that were hypothesised to make them more susceptible to attack by pre-dispersal enemies, namely species which (1) have larger seeds, (2) have a greater average height, (3) have temporally predictable fruiting patterns, and (4) are more abundant at the study site. Synthesis. Premature fruit drop is likely to be a major source of seed mortality for many plant species on Barro Colorado Island. It is plausible that pre-dispersal seed enemies, such as insect seed predators, contribute to community-level patterns of premature fruit drop and have the potential to mediate species co-existence through stabilising negative density dependence. Our study suggests that the role of pre-dispersal enemies in structuring tropical plant communities should be considered alongside the more commonly studied post-dispersal seed and seedling enemies. 
                        more » 
                        « less   
                    
                            
                            How Seeds Shape Our World
                        
                    
    
            Have you eaten bread or rice recently? Or maybe something with oil in it? If you said yes, then you were likely eating foods made from seeds. Seeds are an important food source for humans and animals, and they make up our grains, lentils, nuts, and cooking oils. But seeds are also important for the plant itself, as they can be planted in the ground to grow new plants. In some plants, the seeds are covered with fruit. For example, the tomato fruit is full of seeds, and the avocado has a large seed inside. Other plants like pine trees have so-called naked seeds, with no fruit covering them. What exactly are seeds, and how do they make new plants? Why do seeds grow when you plant them and not in seed packets in the store? Keep reading and you will find these answers, and learn how fascinating, complex, and extraordinarily diverse seeds can be. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1758800
- PAR ID:
- 10562476
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers for Young Minds
- Volume:
- 11
- ISSN:
- 2296-6846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have important consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed‐dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen‐based defensive compounds common in fruits of the neotropical plant genusPiper(Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts toPiperfruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of ants redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants.more » « less
- 
            Did you know that fungi, like mushrooms and molds, are super important for our planet? Fungi can form critical relationships with other organisms. For example, many plants rely on fungi to help them grow and thrive. However, fungi are not always friendly and sometimes they can hurt plants by causing disease. Did you also know that there are fungi in the ocean? While you might not be able to see these fungi when you go to the beach (because they can only be seen with a microscope), they are found everywhere in the ocean. Marine fungi are pretty cool, but we do not know a lot about them yet or what roles they play in the ocean. Scientists are starting to learn more about how marine fungi help the ocean and keep our planet healthy. This article will explore the amazing world of marine fungi!more » « less
- 
            McConkey, Kim (Ed.)Abstract There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing ‘drivers of intraspecific variation in seed dispersal’ into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.more » « less
- 
            Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have complex consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed-dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen-based defensive compounds common in fruits of the neotropical plant genus Piper (Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts to Piper fruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    