skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Constraint on the Relative Disorder of Magnetic Fields between Neutral Interstellar Medium Phases
Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude ( b > 30 ° ) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353–fCNMcorrelation. We fit thep353–fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353–fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM.  more » « less
Award ID(s):
2106607
PAR ID:
10562544
Author(s) / Creator(s):
;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the conditions for the Hi-to-H2transition in the solar neighborhood by analyzing Hiemission and absorption measurements toward 58 Galactic lines of sight (LOSs) along with12CO(1–0) (CO) and dust data. Based on the accurate column densities of the cold and warm neutral medium (CNM and WNM), we first perform a decomposition of gas into atomic and molecular phases, and show that the observed LOSs are mostly Hi-dominated. In addition, we find that the CO-dark H2, not the optically thick Hi, is a major ingredient of the dark gas in the solar neighborhood. To examine the conditions for the formation of CO-bright molecular gas, we analyze the kinematic association between Hiand CO, and find that the CNM is kinematically more closely associated with CO than the WNM. When CNM components within CO line widths are isolated, we find the following characteristics: spin temperature < 200 K, peak optical depth > 0.1, CNM fraction of ∼0.6, andV-band dust extinction > 0.5 mag. These results suggest that CO-bright molecular gas preferentially forms in environments with high column densities where the CNM becomes colder and more abundant. Finally, we confront the observed CNM properties with the steady-state H2formation model of Sternberg et al. and infer that the CNM must be clumpy with a small volume filling factor. Another possibility would be that missing processes in the model, such as cosmic-rays and gas dynamics, play an important role in the Hi-to-H2transition. 
    more » « less
  2. Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822. 
    more » « less
  3. Abstract We present luminosity functions (LFs) and angular correlation functions (ACFs) derived from 18,960 Lyαemitters (LAEs) atz = 2.2−7.3 over a wide survey area of ≲24 deg2that are identified in the narrowband data of the HSC-SSP and CHORUS surveys. Confirming the large sample with 241 spectroscopically identified LAEs, we determine LyαLFs and ACFs in the brighter luminosity range down to 0.5L, and confirm that our measurements are consistent with previous studies but offer significantly reduced statistical uncertainties. The improved precision of our ACFs allows us to clearly detect one-halo terms at some redshifts, and provides large-scale bias measurements that indicate host halo masses of ∼1011Moverz ≃ 2−7. By comparing our LyαLF (ACF) measurements with reionization models, we estimate the neutral hydrogen fractions in the intergalactic medium to bexHi < 0.05 (= 0.06 0.03 + 0.12 ) atz= 5.7 andxHi= 0.1 5 0.08 + 0.10 ( 0.21 0.14 + 0.19 ), 0.1 8 0.12 + 0.14 , and 0.7 5 0.13 + 0.09 atz= 6.6, 7.0, and 7.3, respectively. Our findings suggest that the neutral hydrogen fraction remains relatively low,xHi ≲ 0.2, atz = 5−7, but increases sharply atz > 7, reachingxHi ∼ 0.9 byz ≃ 8−9, as indicated by recent JWST studies. The combination of our results from LAE observations with recent JWST observations suggests that the major epoch of reionization occurred atz ∼ 7−8, likely driven by the emergence of massive sources emitting significant ionizing photons. 
    more » « less
  4. Abstract We report that the neutral hydrogen (Hi) mass density of the Universe (ρHi) increases with cosmic time sincez ∼ 5, peaks atz ∼ 3, and then decreases towardz ∼ 0. This is the first result of Qz5, our spectroscopic survey of 63 quasars atz ≳ 5 with VLT/X-SHOOTER and Keck/ESI aimed at characterizing intervening Higas absorbers atz ∼ 5. The main feature of Qz5 is the high resolution (R ∼ 7000–9000) of the spectra, which allows us to (1) accurately detect high column density Higas absorbers in an increasingly neutral intergalactic medium atz ∼ 5 and (2) determine the reliability of previousρHimeasurements derived with lower resolution spectroscopy. We find five intervening damped Lyαabsorbers (DLAs) atz > 4.5, which corresponds to the lowest DLA incidence rate ( 0.03 4 0.02 0.05 ) atz ≳ 2. We also measure the lowestρHiatz ≳ 2 from our sample of DLAs and subDLAs, corresponding toρHi = 0.5 6 0.31 0.82 × 1 0 8 M Mpc−3atz ∼ 5. Taking into account our measurements atz ∼ 5 and systematic biases in the DLA detection rate at lower spectral resolutions, we conclude thatρHidoubles fromz ∼ 5 toz ∼ 3. From these results emerges a qualitative agreement between how the cosmic densities of Higas mass, molecular gas mass, and star formation rate build up with cosmic time. 
    more » « less
  5. Context. Carbon monoxide (CO) is a poor tracer of H2in the diffuse interstellar medium (ISM), where most of the carbon is not incorporated into CO molecules, unlike the situation at higher extinctions. Aims. We present a novel, indirect method for constraining H2column densities (NH2) without employing CO observations. We show that previously recognized nonlinearities in the relation between the extinction,AV(H2), derived from dust emission and the H Icolumn density (NH I) are due to the presence of molecular gas. Methods. We employed archival (NH2) data, obtained from the UV spectra of stars, and calculatedAV(H2) toward these sight lines using 3D extinction maps. The following relation fits the data: logNH2= 1.38742 (logAV(H2))3− 0.05359 (logAV(H2))2+ 0.25722 logAV(H2) + 20.67191. This relation is useful for constrainingNH2in the diffuse ISM as it requires onlyNH Iand dust extinction data, which are both easily accessible. In 95% of the cases, the estimates produced by the fitted equation have deviations of less than a factor of 3.5. We constructed aNH2map of our Galaxy and compared it to the CO integrated intensity (WCO) distribution. Results. We find that the average ratio (XCO) betweenNH2andWCOis approximately equal to 2 × 1020cm−2(K km s−1)−1, consistent with previous estimates. However, we find that theXCOfactor varies by orders of magnitude on arcminute scales between the outer and the central portions of molecular clouds. For regions withNH2≳ 1020cm−2, we estimate that the average H2fractional abundance,fH2= 2NH2/(2NH2+NH I), is 0.25. Multiple (distinct) largely atomic clouds are likely found along high-extinction sightlines (AV≥ 1 mag), hence limitingfH2in these directions. Conclusions. More than 50% of the lines of sight withNH2≥ 1020cm−2are untraceable by CO with aJ= 1−0 sensitivity limitWCO= 1 K km s−1
    more » « less