skip to main content


This content will become publicly available on June 1, 2025

Title: Microplastic Volatile Organic Compounds Found within Chrysaora chesapeakei in the Patuxent River, Maryland

Microplastics are tangible particles of less than 0.2 inches in diameter that are ubiquitously distributed in the biosphere and accumulate in water bodies. During the east-coast hot summers (23–29 °C) of 2021 and 2022, June through September, we captured copious amounts of the jellyfish Chrysaora chesapeakei, a predominant species found in the Patuxent River of the Chesapeake Bay in Maryland on the United States East Coast. We determined that their gelatinous bodies trapped many microplastics through fluorescent microscopy studies using Rhodamine B staining and Raman Spectroscopy. The chemical nature of the microplastics was detected using gas chromatography–mass spectroscopy headspace (SPME-GC-MS) and solvent extraction (GC-MS) methods through a professional commercial materials evaluation laboratory. Numerous plastic-affiliated volatile organic compounds (VOCs) from diverse chemical origins and their functional groups (alkanes, alkenes, acids, aldehydes, ketones, ethers, esters, and alcohols) along with other non-microplastic volatile organic compounds were observed. Our findings corroborate data in the available scientific literature, distinguishing our finding’s suitability.

 
more » « less
Award ID(s):
2022887
PAR ID:
10562587
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Microplastics
Volume:
3
Issue:
2
ISSN:
2673-8929
Page Range / eLocation ID:
250 to 263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Soils harbor complex biological processes intertwined with metabolic inputs from microbes and plants. Measuring the soil metabolome can reveal active metabolic pathways, providing insight into the presence of specific organisms and ecological interactions. A subset of the metabolome is volatile; however, current soil studies rarely consider volatile organic compounds (VOCs), contributing to biases in sample processing and metabolomic analytical techniques. Therefore, we hypothesize that overall, the volatility of detected compounds measured using current metabolomic analytical techniques will be lower than undetected compounds, a reflection of missed VOCs. To illustrate this, we examined a peatland metabolomic dataset collected using three common metabolomic analytical techniques: nuclear magnetic resonance (NMR), gas chromatography-mass spectroscopy (GC-MS), and fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We mapped the compounds to three metabolic pathways (monoterpenoid biosynthesis, diterpenoid biosynthesis, and polycyclic aromatic hydrocarbon degradation), chosen for their activity in peatland ecosystems and involvement of VOCs. We estimated the volatility of the compounds by calculating relative volatility indices (RVIs), and as hypothesized, the average RVI of undetected compounds within each of our focal pathways was higher than detected compounds ( p < 0.001). Moreover, higher RVI compounds were absent even in sub-pathways where lower RVI compounds were observed. Our findings suggest that typical soil metabolomic analytical techniques may overlook VOCs and leave missing links in metabolic pathways. To more completely represent the volatile fraction of the soil metabolome, we suggest that environmental scientists take into consideration these biases when designing and interpreting their data and/or add direct online measurement methods that capture the integral role of VOCs in soil systems. 
    more » « less
  2. Summary

    White‐nose syndrome, a disease that is caused by the psychrophilic fungusPseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected withP. destructansbut show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limitingP. destructansgrowth remains unexplored. We isolated three bacterial strains with the ability to inhibitP. destructans, namely,Pseudomonas yamanorumGZD14026,Pseudomonas brenneriXRD11711 andPseudomonas fragiGZD14479, from bats in China.Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibitingP. destructansas phenazine‐1‐carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml−1. Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography‐mass spectrometry (GC‐MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3‐tert‐butyl‐4‐hydroxyanisole (isoprenol) and 100 ppm 3‐methyl‐3‐buten‐1‐ol (BHA) inhibited the growth ofP. destructans. These results support that bacteria may play a role in limiting the growth ofP. destructanson bats.

     
    more » « less
  3. Abstract. Western US wildlands experience frequent and large-scale wildfires which arepredicted to increase in the future. As a result, wildfire smoke emissionsare expected to play an increasing role in atmospheric chemistry whilenegatively impacting regional air quality and human health. Understanding theimpacts of smoke on the environment is informed by identifying andquantifying the chemical compounds that are emitted during wildfires and byproviding empirical relationships that describe how the amount andcomposition of the emissions change based upon different fire conditions andfuels. This study examined particulate organic compounds emitted from burningcommon western US wildland fuels at the US Forest Service Fire ScienceLaboratory. Thousands of intermediate and semi-volatile organic compounds(I/SVOCs) were separated and quantified into fire-integrated emission factors(EFs) using a thermal desorption, two-dimensional gas chromatograph withonline derivatization coupled to an electron ionization/vacuum ultraviolethigh-resolution time-of-flight mass spectrometer(TD-GC × GC-EI/VUV-HRToFMS). Mass spectra, EFs as a function ofmodified combustion efficiency (MCE), fuel source, and other definingcharacteristics for the separated compounds are provided in the accompanyingmass spectral library. Results show that EFs for total organic carbon (OC),chemical families of I/SVOCs, and most individual I/SVOCs span 2–5 orders ofmagnitude, with higher EFs at smoldering conditions (low MCE) than flaming.Logarithmic fits applied to the observations showed that log (EFs) forparticulate organic compounds were inversely proportional to MCE. Thesemeasurements and relationships provide useful estimates of EFs for OC,elemental carbon (EC), organic chemical families, and individual I/SVOCs as afunction of fire conditions. 
    more » « less
  4. Rationale

    Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field ofexposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high‐resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures.

    Methods

    Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in‐house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds.

    Results

    The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds.

    Conclusions

    This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.

     
    more » « less
  5. Abstract

    Olfactory cues play an important role in mammalian biology, but have been challenging to assess in the field. Current methods pose problematic issues with sample storage and transportation, limiting our ability to connect chemical variation in scents with relevant ecological and behavioral contexts. Real‐time, in‐field analysisviaportable gas chromatography–mass spectrometry (GC‐MS) has the potential to overcome these issues, but with trade‐offs of reduced sensitivity and compound mass range. We field‐tested the ability of portable GC‐MS to support two representative applications of chemical ecology research with a wild arboreal primate, common marmoset monkeys (Callithrix jacchus). We developed methods to (a) evaluate the chemical composition of marmoset scent marks deposited at feeding sites and (b) characterize the scent profiles of exudates eaten by marmosets. We successfully collected marmoset scent marks across several canopy heights, with the portable GC‐MS detecting known components of marmoset glandular secretions and differentiating these from in‐field controls. Likewise, variation in the chemical profile of scent marks demonstrated a significant correlation with marmoset feeding behavior, indicating these scents’ biological relevance. The portable GC‐MS also delineated species‐specific olfactory signatures of exudates fed on by marmosets. Despite the trade‐offs, portable GC‐MS represents a viable option for characterizing olfactory compounds used by wild mammals, yielding biologically relevant data. While the decision to adopt portable GC‐MS will likely depend on site‐ and project‐specific needs, our ability to conduct two example applications under relatively challenging field conditions bodes well for the versatility of in‐field GC‐MS.

     
    more » « less