Lenarčič, Jadran; Husty, Manfred
(Ed.)
The multidirectional transmission characteristics of a five-bar linkage can be visualized by plotting Jacobian-defined velocity ellipses inside its workspace. The orientation, size, and aspect ratio of these ellipses indicate directional force and velocity multiplication from the actuators to the end-effector. Our broader goal is approximate dimensional synthesis to achieve desired ellipses. On a workspace bound, the minor axis of a velocity ellipse collapses while the major axis aligns tangential to the bound. Interior to the workspace, ellipses vary with continuity. Therefore, the shape of a workspace bound influences the interior ellipses. The workspace bounds of a five-bar linkage are formed from segments of four-bar coupler curves (the locus of endpoint positions while the five-bar is held in output singularity conditions) and circular segments. Therefore, interior ellipses can be influenced by the path synthesis of four-bar linkages that represent the five-bar situated with certain links held colinear (the output singularity conditions). This paper details the synthesis of these four-bar coupler curves for forming the workspace bounds of a five-bar in order to influence its interior ellipses. Our approach employs saddle graphs that detail the connectivity of critical points over an optimization function.
more »
« less
An official website of the United States government

