The built environment requires extraction and consumption of enormous quantities of raw materials, water, and energy. While these materials remain in use for several years or decades, growing global populations and aging infrastructure are driving widespread generation of one of the largest and most challenging waste streams to manage. There is growing interest from communities in integrating circular economy (CE) strategies in the context of construction & demolition (C&D) material management. Many approaches for doing so focus on small-scale CE applications like individual products, materials, or projects. However, greater understanding is needed at the city-scale given communities’ complex position at the frontlines of local development, resource consumption, and waste management. This study summarizes the development of an evaluative framework for community-based C&D circularity at a city or regional level. The framework expands upon a mixed methods approach called the Circularity Assessment Protocol (CAP), which integrates aspects of urban metabolism, geospatial analysis, and qualitative research methods to examine plastic waste management in communities. To advance convergent CE research, here, we aim to adapt the CAP framework to C&D. We describe our adaptation of the CAP to C&D through a conceptual review describing research, methods, and strategies related to seven elements of a local CE context: C&D Analytics, Building Material and Design, Community, Use, Collection, End-of-Cycle, and C&D Emissions. This work describes a novel yet preliminary conceptualization for developing a baseline understanding of circular C&D material management and a holistic examination of barriers, affordances, and opportunities for improving city-wide circularity.
more »
« less
Urban Metabolism and Digital Twin Technologies for a Sustainable Built Environment: Towards a Framework for a Campus Application
Abstract With rapid urbanization necessitating innovative strategies for urban adaptation, combining technological advancements and holistic methodologies, this research explored the synergy between urban metabolism and digital twin technologies to foster sustainable urban development. A pilot model representing a university building, including the surrounding streetscape, was constructed using the Unreal Engine. By using available CAD design drawings and GIS technologies, the physical spaces were modelled. The physical and analytical environments were integrated into the digital twin; material flow analysis was also conducted. The developed framework aims to offer a detailed visualization of building behaviour, facilitating comparisons with urban metabolism analysis. This approach holds promise for sustainable urban design by integrating diverse data streams through digital twin technologies. The potential impact of this research extends to the tracking, mapping, and analysis of crucial resource flows, such as materials, water, energy, and waste, fostering circular economy strategies within the built environment. Understanding urban metabolism facilitates the identification of resource-efficient opportunities, promoting resource recovery and reuse to reduce the environmental impact of urban cores. Embracing digital twin technologies and urban metabolism analysis offers cities streamlined data collection processes, supporting standardization and sustainable urban practices. This study marks a critical step towards integrating diverse data streams into urban metabolism analysis, aligning with circularity objectives in the built environment. By adopting this framework, cities can better understand new production and consumption patterns that prioritize the responsible use of natural resources, contributing to a more sustainable and resilient future.
more »
« less
- Award ID(s):
- 2332246
- PAR ID:
- 10562652
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- IOP Conference Series: Earth and Environmental Science
- Volume:
- 1363
- Issue:
- 1
- ISSN:
- 1755-1307
- Page Range / eLocation ID:
- 012081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The rapid advancement of drone technology and digital twin systems has significantly transformed environmental monitoring, particularly in the field of water quality assessment. This paper systematically reviews the current state of research on the application of drones, digital twins, and their integration for water quality monitoring and management. It highlights key themes, insights, research trends, commonly used methodologies, and future directions from existing studies, aiming to provide a foundational reference for further research to harness the promising potential of these technologies for effective, scalable solutions in water resource management, addressing both immediate and long‐term environmental challenges. The systematic review followed PRISMA guidelines, rigorously analysing hundreds of relevant papers. Key findings emphasise the effectiveness of drones in capturing real‐time, high‐resolution spatial and temporal data, as well as the value of digital twins for predictive and simulation‐based analysis. Most importantly, the review demonstrates the potential of integrating these technologies to enhance sustainable water management practices. However, it also identifies a significant research gap in fully integrating drones with digital twins for comprehensive water quality management. In response, the review outlines future research directions, including improvements in data integration techniques, predictive models, and interdisciplinary collaboration.more » « less
-
Abstract Cities located in the Arctic often have extreme geographic and environmental contexts and unique sociopolitical and economic trajectories that, when combined with amplified effects of climate change in the region, impact future sustainable development. Well-recognized and standardized sustainable development indicator (SDI) frameworks such as ISO 37120 or UN-Habitat City Prosperity Index are often used to compare data across cities globally using comprehensive sets of indicators. While such indexes help characterize progress toward development and guide short- and long-term decision-making, they often lack relevance to specific contexts or characterize future visions of urban growth. To evaluate the extent of these deficiencies and to provide a comparative analysis of approaches to sustainable urban growth in the Arctic, this paper analyzes city planning documents for five northern cities - Anchorage (USA), Utqiagvik (USA), Reyjavik (ISL), Iqaluit, (CAN), Whitehorse, (CAN) - for goals, targets, and indicators and compare these to thematic areas and indicators defined by ISO 37120:2018 Sustainable Cities and Communities. The results confirm that although international SDI frameworks may be useful for comparative analysis of cities across diverse regions, they exclude important local factors that influence goal-oriented urban sustainability planning strategies employed in the Arctic region.more » « less
-
Abstract Understanding changes in the built environment is vital for sustainable urban development and disaster preparedness. Recent years have seen the emergence of a variety of global, continent-level, and nation-wide datasets related to the current state and the evolution of the built environment, human settlements or building stocks. However, such datasets may face limitations like incomplete coverage, sparse building information, coarse resolution, and limited timeframes. This study addresses these challenges by integrating three spatial datasets to create an extensive, attribute-rich sequence of settlement layers spanning 200 years for the contiguous U.S. This integration process involves complex data processing, merging property-level real estate, parcel, and remote sensing-based building footprint data, and creating gridded multi-temporal settlement layers. This effort unveils the latest edition (Version 2) of the Historical Settlement Data Compilation for the U.S. (HISDAC-US), which includes the latest land use and structural information as of the year 2021. It enables detailed research on urban form and structure, helps assess and map the built environment’s risk to natural hazards, assists in population modeling, supports land use analysis, and aids health studies.more » « less
-
Recent research has investigated the importance of both walkable urban design and social cohesion. Social cohesion has been shown to have broad social and health benefits, and scholars have hypothesized that walkable urban design can influence cohesion, though evidence remains limited. In this work, we leveraged a data-driven approach that broke down design factors related to walkable design and investigated their impact on cohesion. We used a US-wide open urban form dataset to characterize walkable urban design, and we used an open survey dataset that measured cohesion and demographics with a total sample size of 9670 in six US cities. We leveraged partial least squared structural equation modeling for statistical analysis. We found, controlling for demographics, that land use diversity had a significant positive impact on social cohesion. We also found that physical density, social density, and transit connectedness had significant negative impacts on cohesion, though this association is largely driven by the very dense neighborhoods in cities. These findings shed light on different theories of the built environment, offering insights for designers, engineers, and policymakers interested in the social effects of the built environment.more » « less
An official website of the United States government

