Summary The rapid technological evolution and adoption of consumer electronics highlights a growing need for adaptive methodologies to evaluate material consumption at the intersection of technological change and increasing consumption. While dematerialization and the circular economy (CE) have both been proposed to mitigate increasing material consumption, recent research has shown that these methods may be ineffective at achieving net material use reduction: When focused on specific products, these methods neglect the effects of complex interactions among and increasing consumption of consumer electronic products. The research presented here develops and applies a material flow analysis aimed at evaluating an entire “product ecosystem,” thereby including the effects of increasing consumption, product trade‐offs, and technological innovations. Results are then used to evaluate the potential efficacy of “natural” dematerialization (occurring as technology advances or smaller products substitute for larger ones) and CE (closing the loop between secondary material supply and primary material demand). Results show that material consumption by the ecosystem of electronics commonly used by U.S. households peaked in 2000. This consumption relies on increasingly diverse materials, including gold, cobalt, and indium, for whom secondary supply is still negligible, particularly given low recovery rates, often less than 1%. Potential circularity metrics of material “dilution,” “dispersion,” and “demand mismatch” are also evaluated, and indicate that CE approaches aimed at closing the loop on consumer electronic material still face several critical barriers particularly related to design and efficient recycling infrastructure.
more »
« less
This content will become publicly available on December 31, 2025
TOWARDS EVALUATING THE CIRCULAR ECONOMY IN THE BUILT ENVIRONMENT: INSIGHTS FROM THE CIRCULARITY ASSESSMENT PROTOCOL (CAP)
The built environment requires extraction and consumption of enormous quantities of raw materials, water, and energy. While these materials remain in use for several years or decades, growing global populations and aging infrastructure are driving widespread generation of one of the largest and most challenging waste streams to manage. There is growing interest from communities in integrating circular economy (CE) strategies in the context of construction & demolition (C&D) material management. Many approaches for doing so focus on small-scale CE applications like individual products, materials, or projects. However, greater understanding is needed at the city-scale given communities’ complex position at the frontlines of local development, resource consumption, and waste management. This study summarizes the development of an evaluative framework for community-based C&D circularity at a city or regional level. The framework expands upon a mixed methods approach called the Circularity Assessment Protocol (CAP), which integrates aspects of urban metabolism, geospatial analysis, and qualitative research methods to examine plastic waste management in communities. To advance convergent CE research, here, we aim to adapt the CAP framework to C&D. We describe our adaptation of the CAP to C&D through a conceptual review describing research, methods, and strategies related to seven elements of a local CE context: C&D Analytics, Building Material and Design, Community, Use, Collection, End-of-Cycle, and C&D Emissions. This work describes a novel yet preliminary conceptualization for developing a baseline understanding of circular C&D material management and a holistic examination of barriers, affordances, and opportunities for improving city-wide circularity.
more »
« less
- PAR ID:
- 10577992
- Publisher / Repository:
- CISA PUBLISHER an imprint of EUROWASTE
- Date Published:
- Journal Name:
- Detritus
- Issue:
- 29
- ISSN:
- 2611-4135
- Page Range / eLocation ID:
- 103 to 119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The negative environmental impacts of the current linear system of textile and apparel production are well-documented and require urgent action. The sector lacks an effective recycling system, resulting in massive waste and environmental pollution. This paper presents the results of qualitative research involving textile and apparel industry stakeholders, including representatives from brands and retailers, waste collectors, recyclers, non-profit organizations, academic institutions, and government agencies. Our research focused on stakeholder perceptions of the significance and importance of textile circularity, the challenges that exist for transitioning the textile and apparel industry from a linear system to a circular economy (CE), and resources that exist to support this transition. The results of this study call attention to the following urgent requirements: a consistent definition of CE to promote transparency and accountability and prevent greenwashing; improved systems for materials identification, sorting, and pre-processing of post-consumer textile waste to enable recycling; innovations in mechanical recycling technologies to maintain the value of recycled materials; and new, materials-driven approaches to design and manufacturing that are responsive to feedstock variability and diverse consumer needs. The research findings also suggest the need for flexible, regional CEs that are rooted in community partnerships.more » « less
-
The circular economy (CE) seeks to maintain products and materials at their highest utility and value. The organisational and governmental policy have seised onto the CE philosophy to advance socio-economic and environmental development. CE remains an essentially contested concept – making its utilisation as a foundation for managerial and policy decisions challenging. Circularity assessment has not been systematically adopted, especially within supply chain management. Using critical scholarly and practical evidential foundation, we proposed a comprehensive set of metrics that can be utilised in supplier selection, monitoring, and development for circularity. These metrics include the macro, meso, and micro levels. A group decision-making method integrating best-worst method (BWM), regret theory (RT), and dual hesitant fuzzy sets (DHFS) for circular economy and circularity (CEC) supplier evaluation and selection is introduced – providing instrumental value for the identified metrics typology. The proposed BWM-DHFE-RT integrative analytical method can accommodate decisionmaker psychological behavior under uncertainty while simultaneously capturing divergent or conflicting opinions of different decision-makers. An illustrative business scenario is utilized to demonstrate the application of the proposed method. Though the proposed CE performance metrics and methodology are used for CEC supplier management reasons they have broader applicability. Future research and application directions are discussed.more » « less
-
Abstract Drawing on research with food waste recycling facilities in New England, this paper explores a fundamental tension between the eco-modernist logics of the circular economy and the reality of contemporary waste streams. Composting and digestion are promoted as key solutions to food waste, due to their ability to return nutrients to agricultural soils. However, our work suggests that food waste processors increasingly find themselves responsible for policing boundaries between distinct “material” and “biological” systems as imagined by the architects of the circular economy—boundaries penetrable by toxicants. This responsibility creates significant problems for processors due to the regulatory, educational, and structural barriers documented in this research. This paper contributes to scholarship which suggests the need to rethink the modernist logics of the circular economy and to recognize the realities of entangled material and biological systems. More specifically, we argue that if circularity is the goal, policy needs to recognize the barriers food waste processors face and concentrate circularity efforts further upstream to ensure fair, just, and safe circular food systems.more » « less
-
Increasingly, circularity indicators for material, energy, and water systems guide circular economy design. While indicators for products made from recycled carbon-based materials are somewhat common, peer indicators for waste nitrogen-derived products are limited. It is important, however, to develop such indicators to guide emerging technologies that transform waste nitrogen into products. In this study, we summarize the nitrogen circularity indicator literature, emphasizing the agricultural and wastewater sectors. Next, we use the Material Circularity Indicator (MCI) developed by the Ellen MacArthur Foundation, to quantify the circularity of products made from waste nitrogen in swine manure. We considered four test cases using different technologies to recover nitrogen from the manure. Our analysis indicates that technologies that seem to increase circularity on the surface may not yield a substantial increase in MCI results. Finally, we discuss the strengths and weaknesses of using the MCI for product-level analysis and further developments.more » « less
An official website of the United States government
