skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iwahori‐metaplectic duality
Abstract We construct a family of solvable lattice models whose partition functions include ‐adic Whittaker functions for general linear groups from two very different sources: from Iwahori‐fixed vectors and from metaplectic covers. Interpolating between them by Drinfeld twisting, we uncover unexpected relationships between Iwahori and metaplectic Whittaker functions. This leads to new Demazure operator recurrence relations for spherical metaplectic Whittaker functions. In prior work of the authors it was shown that the row transfer matrices of certain lattice models for spherical metaplectic Whittaker functions could be represented as ‘half‐vertex operators’ operating on the ‐Fock space of Kashiwara, Miwa and Stern. In this paper the same is shown for all the members of this more general family of lattice models including the one representing Iwahori Whittaker functions.  more » « less
Award ID(s):
2101392
PAR ID:
10562657
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
London Math. Society, Wiley
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
109
Issue:
6
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We construct a family of representations of affine Hecke algebras, which depend on a number of auxiliary parameters $$g_i$$ g i , and which we refer to as metaplectic representations. We realize these representations as quotients of certain parabolically induced modules, and we apply the method of Baxterization (localization) to obtain actions of corresponding Weyl groups on rational functions on the torus. Our construction both generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and Puskas, which had depended on a crucial computer verification. A key motivation is that when the parameters $$g_i$$ g i are specialized to certain Gauss sums, the resulting representation and its localization arise naturally in the consideration of p -parts of Weyl group multiple Dirichlet series. In this special case, similar results have been previously obtained in the literature by the study of Iwahori Whittaker functions for principal series of metaplectic covers of reductive p -adic groups. However this technique is not available for generic parameters $$g_i$$ g i . It turns out that the metaplectic representations can be extended to the double affine Hecke algebra, where they share many important properties with Cherednik’s basic polynomial representation, which they generalize. This allows us to introduce families of metaplectic polynomials, which depend on the $$g_i$$ g i , and which generalize Macdonald polynomials. In this paper we discuss in some detail the situation for type A , which is of considerable interest in algebraic combinatorics. We postpone some of the proofs, as well as a discussion of other types, to the sequel. 
    more » « less
  2. Abstract Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of$$\check {N}$$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral enveloping algebra. 
    more » « less
  3. The classical theta correspondence, based on the Weil representation, allows one to lift automorphic representations on symplectic groups or their double covers to au- tomorphic representations on special orthogonal groups. It is of interest to vary the orthog- onal group and describe the behavior in this theta tower (the Rallis tower). In prior work, the authors obtained an extension of the classical theta correspondence to higher degree metaplectic covers of symplectic and special orthogonal groups that is based on the tensor product of the Weil representation with another small representation. In this work we study the existence of generic lifts in the resulting theta tower. In the classical case, there are two orthogonal groups that may support a generic lift of an irreducible cuspidal automorphic representation of a symplectic group. We show that in general the Whittaker range consists of r + 1 groups for the lift from the r-fold cover of a symplectic group. We also give a period criterion for the genericity of the lift at each step of the tower. 
    more » « less
  4. Singh, M.; Williamson, D. (Ed.)
    Birkhoff’s representation theorem defines a bijection between elements of a distributive lattice L and the family of upper sets of an associated poset B. When elements of L are the stable matchings in an instance of Gale and Shapley’s marriage model, Irving et al. showed how to use B to devise a combinatorial algorithm for maximizing a linear function over the set of stable matchings. In this paper, we introduce a general property of distributive lattices, which we term as affine representability, and show its role in efficiently solving linear optimization problems over the elements of a distributive lattice, as well as describing the convex hull of the characteristic vectors of lattice elements. We apply this concept to the stable matching model with path-independent quotafilling choice functions, thus giving efficient algorithms and a compact polyhedral description for this model. To the best of our knowledge, this model generalizes all models from the literature for which similar results were known, and our paper is the first that proposes efficient algorithms for stable matchings with choice functions, beyond extension of the Deferred Acceptance algorithm. 
    more » « less
  5. Abstract In this paper, we show that $$\lambda (z_1) -\lambda (z_2)$$, $$\lambda (z_1)$$, and $$1-\lambda (z_1)$$ are all Borcherds products on $$X(2) \times X(2)$$. We then use the big CM value formula of Bruinier, Kudla, and Yang to give explicit factorization formulas for the norms of $$\lambda (\frac{d+\sqrt d}2)$$, $$1-\lambda (\frac{d+\sqrt d}2)$$, and $$\lambda (\frac{d_1+\sqrt{d_1}}2) -\lambda (\frac{d_2+\sqrt{d_2}}2)$$, with the latter under the condition $$(d_1, d_2)=1$$. Finally, we use these results to show that $$\lambda (\frac{d+\sqrt d}2)$$ is always an algebraic integer and can be easily used to construct units in the ray class field of $${\mathbb{Q}}(\sqrt{d})$$ of modulus $$2$$. In the process, we also give explicit formulas for a whole family of local Whittaker functions, which are of independent interest. 
    more » « less