skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metaplectic representations of Hecke algebras, Weyl group actions, and associated polynomials
Abstract We construct a family of representations of affine Hecke algebras, which depend on a number of auxiliary parameters $$g_i$$ g i , and which we refer to as metaplectic representations. We realize these representations as quotients of certain parabolically induced modules, and we apply the method of Baxterization (localization) to obtain actions of corresponding Weyl groups on rational functions on the torus. Our construction both generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and Puskas, which had depended on a crucial computer verification. A key motivation is that when the parameters $$g_i$$ g i are specialized to certain Gauss sums, the resulting representation and its localization arise naturally in the consideration of p -parts of Weyl group multiple Dirichlet series. In this special case, similar results have been previously obtained in the literature by the study of Iwahori Whittaker functions for principal series of metaplectic covers of reductive p -adic groups. However this technique is not available for generic parameters $$g_i$$ g i . It turns out that the metaplectic representations can be extended to the double affine Hecke algebra, where they share many important properties with Cherednik’s basic polynomial representation, which they generalize. This allows us to introduce families of metaplectic polynomials, which depend on the $$g_i$$ g i , and which generalize Macdonald polynomials. In this paper we discuss in some detail the situation for type A , which is of considerable interest in algebraic combinatorics. We postpone some of the proofs, as well as a discussion of other types, to the sequel.  more » « less
Award ID(s):
2001537 1623501
PAR ID:
10259996
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Selecta Mathematica
Volume:
27
Issue:
3
ISSN:
1022-1824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Müller, Werner; Shin, Sug Woo; Templier, Nicolas (Ed.)
    The classical theta correspondence establishes a relationship between automorphic representations on special orthogonal groups and automorphic representations on symplectic groups or their double covers. This correspondence is achieved by using as integral kernel a theta series on the metaplectic double cover of a symplectic group that is constructed from the Weil representation. There is also an analogous local correspondence. In this work we present an extension of the classical theta correspondence to higher degree metaplectic covers of symplectic and special orthogonal groups. The key issue here is that for higher degree covers there is no analogue of the Weil representation, and additional ingredients are needed. Our work reflects a broader paradigm: constructions in automorphic forms that work for algebraic groups or their double covers should often extend to higher degree metaplectic covers. 
    more » « less
  2. We study the realization of acyclic cluster algebras as coordinate rings of Coxeter double Bruhat cells in Kac–Moody groups. We prove that all cluster monomials with $$\mathbf{g}$$ -vector lying in the doubled Cambrian fan are restrictions of principal generalized minors. As a corollary, cluster algebras of finite and affine type admit a complete and non-recursive description via (ind-)algebraic group representations, in a way similar in spirit to the Caldero–Chapoton description via quiver representations. In type $$A_{1}^{(1)}$$ , we further show that elements of several canonical bases (generic, triangular, and theta) which complete the partial basis of cluster monomials are composed entirely of restrictions of minors. The discrepancy among these bases is accounted for by continuous parameters appearing in the classification of irreducible level-zero representations of affine Lie groups. We discuss how our results illuminate certain parallels between the classification of representations of finite-dimensional algebras and of integrable weight representations of Kac–Moody algebras. 
    more » « less
  3. null; Yau, Shing-Tung (Ed.)
    Abstract. In this paper, we consider the star operations for (graded) affine Hecke algebras which preserve certain natural filtrations. We show that, up to inner conjugation, there are only two such star operations for the graded Hecke algebra: the first, denoted ⋆, corresponds to the usual star operation from reductive p-adic groups, and the second, denoted • can be regarded as the analogue of the compact star operation of a real group considered by [ALTV]. We explain how the star operation • appears naturally in the Iwahori- spherical setting of p-adic groups via the endomorphism algebras of Bernstein projectives. We also prove certain results about the signature of •-invariant forms and, in particular, about •-unitary simple modules. 
    more » « less
  4. Abstract We construct a family of solvable lattice models whose partition functions include ‐adic Whittaker functions for general linear groups from two very different sources: from Iwahori‐fixed vectors and from metaplectic covers. Interpolating between them by Drinfeld twisting, we uncover unexpected relationships between Iwahori and metaplectic Whittaker functions. This leads to new Demazure operator recurrence relations for spherical metaplectic Whittaker functions. In prior work of the authors it was shown that the row transfer matrices of certain lattice models for spherical metaplectic Whittaker functions could be represented as ‘half‐vertex operators’ operating on the ‐Fock space of Kashiwara, Miwa and Stern. In this paper the same is shown for all the members of this more general family of lattice models including the one representing Iwahori Whittaker functions. 
    more » « less
  5. For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues. 
    more » « less