Tracheobronchial tumors, while uncommon, are often malignant in adults. Surgical removal is the primary therapy for non-metastatic lung malignancies, but it is only possible in a small percentage of non-small-cell lung cancer patients and is limited by the number and location of tumors, as well as the patient’s overall health. This study proposes an alternative treatment: administering aerosolized chemotherapeutic particles via the pulmonary route using endotracheal catheters to target lung tumors. To improve delivery efficiency to the lesion, it is essential to understand local drug deposition and particle transport dynamics. This study uses an experimentally validated computational fluid particle dynamics (CFPD) model to simulate the transport and deposition of inhaled chemotherapeutic particles in a 3-dimensional tracheobronchial tree with 10 generations (G). Based on the particle release maps, targeted drug delivery strategies are proposed to enhance particle deposition at two lung tumor sites in G10. Results indicate that controlled drug release can improve particle delivery efficiencies at both targeted regions. The use of endotracheal catheters significantly affects particle delivery efficiencies in targeted tumors. The parametric analysis shows that using smaller catheters can deliver more than 74% of particles to targeted tumor sites, depending on the location of the tumor and the catheter diameter used, compared to less than 1% using conventional particle administration methods. Furthermore, the results indicate that particle release time has a significant impact on particle deposition under the same inhalation profile. This study serves as a first step in understanding the impact of catheter diameter on localized endotracheal injection for targeting tumors in small lung airways.
more »
« less
This content will become publicly available on December 1, 2025
Experimental full-volume airway approximation for assessing breath-dependent regional aerosol deposition
Modeling aerosol dynamics in the airways is challenging, and most modern personalized in vitro tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an in vitro modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both in vivo and in silico benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.
more »
« less
- Award ID(s):
- 2237430
- PAR ID:
- 10562710
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Device
- Volume:
- 2
- Issue:
- 12
- ISSN:
- 2666-9986
- Page Range / eLocation ID:
- 100514
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neonatal respiratory distress syndrome is a potentially life-threatening condition that is often treated with the delivery of exogenous surfactants through a process called surfactant replacement therapy. This therapy includes the administration of the liquid surfactant through an endotracheal tube and mechanical ventilation. Due to the difficulty of imaging neonate lungs during this therapy, the success of surfactant delivery is often determined by observational techniques and evaluation of blood oxygen levels. The limitation of imaging creates challenges in evaluating the distribution of surfactant in airways. To address this limitation, we designed a computational, eight-generation, asymmetric neonate lung model using morphometric data to mimic the geometric structure of the human airway tree and fabricated it using an additive manufacturing technique. We used our model to study two-aliquot delivery of a clinically rated liquid surfactant under two different orientations to evaluate its distribution in airways. Our study offers a complex lung airway tree design that mimics the native geometry of the human airway tree to enable studies of therapeutics transport in airways.more » « less
-
Abstract Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being ‘safe’ during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5—a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.more » « less
-
Abstract Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.more » « less
-
We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury.more » « less
An official website of the United States government
