skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Inclusion, Control, and Ownership in Workplace AI-Mediated Communication
Given large language models’ (LLMs) increasing integration into workplace software, it is important to examine how biases in the models may impact workers. For example, stylistic biases in the language suggested by LLMs may cause feelings of alienation and result in increased labor for individuals or groups whose style does not match. We examine how such writer-style bias impacts inclusion, control, and ownership over the work when co-writing with LLMs. In an online experiment, participants wrote hypothetical job promotion requests using either hesitant or self-assured auto-complete suggestions from an LLM and reported their subsequent perceptions. We found that the style of the AI model did not impact perceived inclusion. However, individuals with higher perceived inclusion did perceive greater agency and ownership, an effect more strongly impacting participants of minoritized genders. Feelings of inclusion mitigated a loss of control and agency when accepting more AI suggestions.  more » « less
Award ID(s):
1901151
PAR ID:
10562893
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703300
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Location:
Honolulu HI USA
Sponsoring Org:
National Science Foundation
More Like this
  1. AI technologies such as Large Language Models (LLMs) are increasingly used to make suggestions to autocomplete text as people write. Can these suggestions impact people’s writing and attitudes? In two large-scale preregistered experiments (N=2,582), we expose participants who are writing about important societal issues to biased AI-generated suggestions. The attitudes participants expressed in their writing and in a post-task survey converged towards the AI’s position. Yet, a majority of participants were unaware of the AI suggestions’ bias and their influence. Further, awareness of the task or of the AI’s bias, e.g. warning participants about potential bias before or after exposure to the treatment, did not mitigate the influence effect. Moreover, the AI’s influence is not fully explained by the additional information provided by the suggestions. 
    more » « less
  2. Large language models (LLMs) are being increasingly integrated into everyday products and services, such as coding tools and writing assistants. As these embedded AI applications are deployed globally, there is a growing concern that the AI models underlying these applications prioritize Western values. This paper investigates what happens when a Western-centric AI model provides writing suggestions to users from a different cultural background. We conducted a cross-cultural controlled experiment with 118 participants from India and the United States who completed culturally grounded writing tasks with and without AI suggestions. Our analysis reveals that AI provided greater efficiency gains for Americans compared to Indians. Moreover, AI suggestions led Indian participants to adopt Western writing styles, altering not just what is written but also how it is written. These findings show that Western-centric AI models homogenize writing toward Western norms, diminishing nuances that differentiate cultural expression. 
    more » « less
  3. Artificial Intelligence (AI) is a transformative force in communication and messaging strategy, with potential to disrupt traditional approaches. Large language models (LLMs), a form of AI, are capable of generating high-quality, humanlike text. We investigate the persuasive quality of AI-generated messages to understand how AI could impact public health messaging. Specifically, through a series of studies designed to characterize and evaluate generative AI in developing public health messages, we analyze COVID-19 pro-vaccination messages generated by GPT-3, a state-of-the-art instantiation of a large language model. Study 1 is a systematic evaluation of GPT-3's ability to generate pro-vaccination messages. Study 2 then observed peoples' perceptions of curated GPT-3-generated messages compared to human-authored messages released by the CDC (Centers for Disease Control and Prevention), finding that GPT-3 messages were perceived as more effective, stronger arguments, and evoked more positive attitudes than CDC messages. Finally, Study 3 assessed the role of source labels on perceived quality, finding that while participants preferred AI-generated messages, they expressed dispreference for messages that were labeled as AI-generated. The results suggest that, with human supervision, AI can be used to create effective public health messages, but that individuals prefer their public health messages to come from human institutions rather than AI sources. We propose best practices for assessing generative outputs of large language models in future social science research and ways health professionals can use AI systems to augment public health messaging. 
    more » « less
  4. Generative AI tools, particularly those utilizing large language models (LLMs), are increasingly used in everyday contexts. While these tools enhance productivity and accessibility, little is known about how Deaf and Hard of Hearing (DHH) individuals engage with them or the challenges they face when using them. This paper presents a mixed-method study exploring how the DHH community uses Text AI tools like ChatGPT to reduce communication barriers and enhance information access. We surveyed 80 DHH participants and conducted interviews with 9 participants. Our findings reveal important benefits, such as eased communication and bridging Deaf and hearing cultures, alongside challenges like lack of American Sign Language (ASL) support and Deaf cultural understanding. We highlight unique usage patterns, propose inclusive design recommendations, and outline future research directions to improve Text AI accessibility for the DHH community. 
    more » « less
  5. BackgroundLaypeople have easy access to health information through large language models (LLMs), such as ChatGPT, and search engines, such as Google. Search engines transformed health information access, and LLMs offer a new avenue for answering laypeople’s questions. ObjectiveWe aimed to compare the frequency of use and attitudes toward LLMs and search engines as well as their comparative relevance, usefulness, ease of use, and trustworthiness in responding to health queries. MethodsWe conducted a screening survey to compare the demographics of LLM users and nonusers seeking health information, analyzing results with logistic regression. LLM users from the screening survey were invited to a follow-up survey to report the types of health information they sought. We compared the frequency of use of LLMs and search engines using ANOVA and Tukey post hoc tests. Lastly, paired-sample Wilcoxon tests compared LLMs and search engines on perceived usefulness, ease of use, trustworthiness, feelings, bias, and anthropomorphism. ResultsIn total, 2002 US participants recruited on Prolific participated in the screening survey about the use of LLMs and search engines. Of them, 52% (n=1045) of the participants were female, with a mean age of 39 (SD 13) years. Participants were 9.7% (n=194) Asian, 12.1% (n=242) Black, 73.3% (n=1467) White, 1.1% (n=22) Hispanic, and 3.8% (n=77) were of other races and ethnicities. Further, 1913 (95.6%) used search engines to look up health queries versus 642 (32.6%) for LLMs. Men had higher odds (odds ratio [OR] 1.63, 95% CI 1.34-1.99; P<.001) of using LLMs for health questions than women. Black (OR 1.90, 95% CI 1.42-2.54; P<.001) and Asian (OR 1.66, 95% CI 1.19-2.30; P<.01) individuals had higher odds than White individuals. Those with excellent perceived health (OR 1.46, 95% CI 1.1-1.93; P=.01) were more likely to use LLMs than those with good health. Higher technical proficiency increased the likelihood of LLM use (OR 1.26, 95% CI 1.14-1.39; P<.001). In a follow-up survey of 281 LLM users for health, most participants used search engines first (n=174, 62%) to answer health questions, but the second most common first source consulted was LLMs (n=39, 14%). LLMs were perceived as less useful (P<.01) and less relevant (P=.07), but elicited fewer negative feelings (P<.001), appeared more human (LLM: n=160, vs search: n=32), and were seen as less biased (P<.001). Trust (P=.56) and ease of use (P=.27) showed no differences. ConclusionsSearch engines are the primary source of health information; yet, positive perceptions of LLMs suggest growing use. Future work could explore whether LLM trust and usefulness are enhanced by supplementing answers with external references and limiting persuasive language to curb overreliance. Collaboration with health organizations can help improve the quality of LLMs’ health output. 
    more » « less