skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Affinity Purification of a 6X-His-tagged protein using a Fast Protein Liquid Chromatography System
Award ID(s):
1929346
PAR ID:
10562914
Author(s) / Creator(s):
; ;
Publisher / Repository:
MyJove Corp.
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
206
ISSN:
1940-087X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Csikász-Nagy, Attila (Ed.)
  3. Proteolysis-targeting chimera (PROTAC) has emerged as a groundbreaking therapeutic strategy by hijacking the endogenous ubiquitin proteasome system (UPS) for targeted protein degradation. These heterobifunctional molecules recruit E3 ligases to recognize the protein of interest (POI) and facilitate its ubiquitination, leading to subsequent proteasomal degradation. Compared to conventional protein inhibitors, PROTACs offer a broader range of target degradation and remain effective even against proteins with drug-resistant mutations. Moreover, PROTACs function in a catalytic manner to degrade POIs, allowing for significantly lower administration dosages. In recent years, PROTACs have shown great promise in cancer therapy due to their high efficiency and broad applicability. However, their clinical applications remain challenging due to low bioavailability, limited tumor-targeting ability, and potential side effects. Utilizing nanomedicine for the delivery of PROTACs offers a promising strategy to enhance bioavailability, improve tumor selectivity, and minimize toxicity, thereby advancing their applications in cancer treatment. In this review, we outline the fundamental design principles of PROTACs, summarize the latest progress of nanomedicines from molecular design to drug delivery for improved tumor treatment, introduce PROTAC-based combination therapies and emerging design strategies, and discuss current challenges and future prospects of PROTAC nanomedicines toward clinical translation. 
    more » « less