This content will become publicly available on December 1, 2025
Optimizing the Nonconventional Water Supply across the Water-Energy-Food Nexus for Arid Regions Using a Life Cycle Assessment
- Award ID(s):
- 2114701
- PAR ID:
- 10563007
- Publisher / Repository:
- American Society of Civil Engineers (ASCE)
- Date Published:
- Journal Name:
- Journal of Water Resources Planning and Management
- Volume:
- 150
- Issue:
- 12
- ISSN:
- 0733-9496
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The vibrational predissociation (VP) dynamics of the phenol–water (PhOH–H 2 O) dimer were studied by detecting H 2 O fragments and using velocity map imaging (VMI) to infer the internal energy distributions of PhOH cofragments, pair-correlated with selected rotational levels of the H 2 O fragments. Following infrared (IR) laser excitation of the hydrogen-bonded OH stretch fundamental of PhOH (Pathway 1) or the asymmetric OH stretch localized on H 2 O (Pathway 2), dissociation to H 2 O + PhOH was observed. H 2 O fragments were monitored state-selectively by using 2+1 Resonance-Enhanced Multiphoton Ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). VMI of H 2 O in selected rotational levels was used to derive center-of-mass (c.m.) translational energy ( E T ) distributions. The pair-correlated internal energy distributions of the PhOH cofragments derived via Pathway 1 were well described by a statistical prior distribution. On the other hand, the corresponding distributions obtained via Pathway 2 show a propensity to populate higher-energy rovibrational levels of PhOH than expected from a statistical distribution and agree better with an energy-gap model. The REMPI spectra of the H 2 O fragments from both pathways could be fit by Boltzmann plots truncated at the maximum allowed energy, with a higher temperature for Pathway 2 than that for Pathway 1. We conclude that the VP dynamics depends on the OH stretch level initially excited.more » « less
An official website of the United States government
