This content will become publicly available on August 29, 2025
You can print anything... or can you? 3D printing is an exciting new technology that promises to very quickly create anything people can design. Scientists who want to make soft robots, like Baymax from Big Hero 6
- Award ID(s):
- 1935312
- PAR ID:
- 10563072
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers for Young Minds
- Volume:
- 12
- ISSN:
- 2296-6846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Existing fluidic soft logic gates for controlling soft robots typically depend on labor-intensive manual fabrication or costly printing methods. In our research, we utilize Fused Deposition Modeling to create fully 3D-printed fluidic logic gates, fabricating a valve from thermoplastic polyurethane. We investigate the 3D printing of tubing and introduce a novel extrusion nozzle for tubing production. Our approach significantly reduces the production time for soft fluidic valves from 27 hours using replica molding to 3 hours with FDM printing. We apply our 3D-printed valve to develop optimized XOR gates and D-latch circuits, presenting a rapid and cost- effective fabrication method for fluidic logic gates that aims to make fluidic circuitry more accessible to the soft robotics community.more » « less
-
Abstract Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.
-
Abstract 4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (
E ) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anE that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self‐standing lifting robot, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight. -
Abstract 4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (
E ) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anE that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry that morphs into a 3D self‐standing lifting robot is designed and printed, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, this ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. Finally these inks are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight. -
Here, we present a multimodal, lamprey-inspired, 3D printed soft fluidic robot/actuator based on an antagonistic pneunet architecture. The Pacific Lamprey is a unique fish which is able to climb wetted vertical surfaces using its suction-cup mouth and snake-like morphology. The continuum structure of these fish lends itself to soft robots, given their ability to form continuous bends. Additionally, the high gravimetric and volumetric power density attainable by soft actuators make them good candidates for climbing robots. Fluidic soft robots are often limited in the forces they can exert due to limitations on their actuation pressure. This actuator is able to operate at relatively high pressures (for soft robots) of 756 kPa (95 psig) with a −3 dB bandwidth of 2.23 Hz to climb at rates exceeding 18 cm/s. The robot is capable of progression on a vertical surface using a compliant microspine attachment as the functional equivalent of the lamprey’s more complex suction-cup mouth. The paper also presents the details of the 3D-printed manufacturing of this actuator/robot.more » « less