skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-process Model and Residual Abundance Analysis of the Milky Way Massive Satellites
Abstract The “two-process model” is a promising technique for interpreting stellar chemical abundance data from large-scale surveys (e.g., the Sloan Digital Sky Survey IV/V and the Galactic Archeology with HERMES survey), enabling more quantitative empirical studies of differences in chemical enrichment history between galaxies without relying on detailed yield and evolution models. In this work, we fit two-process model parameters to (1) a luminous giant Milky Way (MW) sample and (2) stars comprising the Sagittarius dwarf galaxy (Sgr). We then use these two sets of model parameters to predict the abundances of 14 elements of stars belonging to the MW and in five of its massive satellite galaxies, analyzing the residuals between the predicted and observed abundances. We find that the model fit to (1) results in large residuals (0.1–0.3 dex) for most metallicity-dependent elements in the metal-rich ([Mg/H] > −0.8) stars of the satellite galaxies. However, the model fit to (2) results in small or no residuals for all elements across all satellite galaxies. Therefore, despite the wide variation in [X/Mg]–[Mg/H] abundance patterns of the satellite galaxies, the two-process framework provides an accurate characterization of their abundance patterns across many elements, but these multielement patterns are systematically different between the dwarf galaxy satellites and the MW disks. We consider a variety of scenarios for the origin of this difference, highlighting the possibility that a large inflow of pristine gas to the MW disk diluted the metallicity of star-forming gas without changing abundance ratios.  more » « less
Award ID(s):
2307621
PAR ID:
10563309
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [ α /Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α -element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution. 
    more » « less
  2. Abstract We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a “prompt” component tracing core-collapse supernovae and a “delayed” component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Δ[X/H] from this two-parameter fit. The rms residuals range from ∼0.01–0.03 dex for the most precisely measured APOGEE abundances to ∼0.1 dex for Na, V, and Ce. Thecorrelationsof residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [α/Fe]. Relative to the main disk (R= 3–13 kpc), we find nearly identical abundance patterns in the outer disk (R= 15–17 kpc), 0.05–0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4–1 dex) of multiple elements inωCen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements. 
    more » « less
  3. Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor. 
    more » « less
  4. Abstract We investigate the [X/Mg] abundances of 16 elements for 82,910 Galactic disk stars from GALAH+ DR3. We fit the median trends of low-Ia and high-Ia populations with a two-process model, which describes stellar abundances in terms of a prompt core-collapse and delayed Type-Ia supernova component. For each sample star, we fit the amplitudes of these two components and compute the residual Δ[X/H] abundances from this two-parameter fit. We find rms residuals ≲0.07 dex for well-measured elements and correlated residuals among some elements (such as Ba, Y, and Zn) that indicate common enrichment sources. From a detailed investigation of stars with large residuals, we infer that roughly 40% of the large deviations are physical and 60% are caused by problematic data such as unflagged binarity, poor wavelength solutions, and poor telluric subtraction. As one example of a population with distinctive abundance patterns, we identify 15 stars that have 0.3–0.6 dex enhancements of Na but normal abundances of other elements from O to Ni and positive average residuals of Cu, Zn, Y, and Ba. We measure the median elemental residuals of 14 open clusters, finding systematic ∼0.1–0.4 dex enhancements of O, Ca, K, Y, and Ba and ∼0.2 dex depletion of Cu in young clusters. Finally, we present a restricted three-process model where we add an asymptotic giant branch star (AGB) component to better fit Ba and Y. With the addition of the third process, we identify a population of stars, preferentially young, that have much higher AGB enrichment than expected from their SNIa enrichment. 
    more » « less
  5. null (Ed.)
    ABSTRACT Deciphering the distribution of metals throughout galaxies is fundamental in our understanding of galaxy evolution. Nearby, low-metallicity, star-forming dwarf galaxies, in particular, can offer detailed insight into the metal-dependent processes that may have occurred within galaxies in the early Universe. Here, we present VLT/MUSE observations of one such system, JKB 18, a blue diffuse dwarf galaxy with a metallicity of only 12 + log(O/H)=7.6 ± 0.2 (∼0.08 Z⊙). Using high spatial resolution integral-field spectroscopy of the entire system, we calculate chemical abundances for individual H ii regions using the direct method and derive oxygen abundance maps using strong-line metallicity diagnostics. With large-scale dispersions in O/H, N/H, and N/O of ∼0.5–0.6 dex and regions harbouring chemical abundances outside this 1σ distribution, we deem JKB 18 to be chemically inhomogeneous. We explore this finding in the context of other chemically inhomogeneous dwarf galaxies and conclude that neither the accretion of metal-poor gas, short mixing time-scales or self-enrichment from Wolf–Rayet stars are accountable. Using a galaxy-scale, multiphase, hydrodynamical simulation of a low-mass dwarf galaxy, we find that chemical inhomogeneities of this level may be attributable to the removal of gas via supernovae and the specific timing of the observations with respect to star formation activity. This study not only draws attention to the fact that dwarf galaxies can be chemically inhomogeneous, but also that the methods used in the assessment of this characteristic can be subject to bias. 
    more » « less