As electric vehicles (EVs) become increasingly common in transportation infrastructures, the need to strengthen and diversify the EV charging systems becomes more necessary. Dynamic Wireless Power Transfer (DWPT) roadways allow EVs to be recharged while in-motion, thus allowing to improve the driving ranges and facilitating the widespread adoption of EVs. One major challenge to adopt large-scale DWPT networks is to efficiently and accurately develop load demand models to comprehend the complex behavior on power distribution grid due to difficulty in developing power electronic simulations for charging systems consisting of either numerous transmitter pads or high traffic volumes. This paper proposes a novel modified Toeplitz convolution method for efficient large-scale DWPT load demand modeling. The proposed method achieves more accurate modeling of DWPT systems from a few transmitter pads to tens of miles in real-world traffic scenarios with light computational load. Test results for a small-scale DWPT system are first generated to validate the accuracy of the proposed method before scaling to large-scale load demand modeling where real-world traffic flow data is utilized in DWPT networks ranging from 2–10 miles. A comparative analysis is further performed for the scenarios under consideration to demonstrate the efficiency and accuracy of the proposed method.
more »
« less
UAV Fleet Charging on Telecom Towers With Differential Capacitive Wireless Power Transfer
This paper introduces a capacitive differential wireless power transfer (DWPT) architecture to efficiently charge an array of unmanned aerial vehicles (UAVs) on a telecom tower as a UAV airport. A switched capacitor (SC) based ladder differential power processing (DPP) converter is utilized to regulate the voltages of multiple series-stacked wireless charging modules from a high-voltage DC bus. The half-bridge switches in the DPP circuit are reused as an inverter in a capacitive power transfer (CPT) system with a double-sided LC-compensation network, featuring reduced semiconductor component count and device stress. The capacitive coupling plates are integrated into landing platforms and UAV landing gears for high coupling capacitance and minimum influence on aerodynamics. An experimental prototype and related design considerations are presented to achieve high efficiency and ensure robust performance against misalignments. The DWPT architecture is verified through an 8-port DPP converter supporting up to 8 CPT charging modules.
more »
« less
- Award ID(s):
- 1847365
- PAR ID:
- 10563405
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Power Electronics
- ISSN:
- 0885-8993
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to environmental concerns, electric vehicles (EVs) have become increasingly popular in recent decades. While EV s offer several benefits, they also present challenges such as prolonged charging times and range anxiety. To address these issues and enhance EV market participation, dynamic wireless power transfer (DWPT) is gaining a great attention in electrified-transportation sector, leading to an emergence of DWPT for EVs. DWPT offers advantages like charging while in-motion. However, DWPT roadways also impose additional demands on the power system, potentially increasing operational costs. The main objective of this paper is to manage effectively the additional load caused by DWPT roadways, and this paper presents the utilization of distributed energy resources (DERs), such as photovoltaic (PV) systems and battery storage system (BSS), to minimize the system costs. The importance of our proposed load management strategy becomes even more critical during extreme events. Therefore, this paper further examines two scenarios, i.e., normal operations and under extreme conditions considering line outages, to compare the costs associated with DWPT systems. The efficiency of the proposed method is validated using IEEE 33-bus distribution systems through a mixed integer linear programming (MILP) optimization problem. Test results demonstrate that integrating DWPT system increases the system costs under both normal and extreme conditions, however, the DER-based mechanism is capable of mitigating these costs optimally.more » « less
-
High performance computing needs high performance power electronics. This paper presents the design of an ultra-efficient series-stacked hard-disk-drive (HDD) data storage server with a multiport ac-coupled differential power processing (MAC-DPP) architecture. A large number of HDDs are connected in series and ac-coupled through a multi-winding transformer with a single flux linkage. The MAC-DPP architecture offers very low power conversion stress, can achieve extremely high efficiency, and can reduce the magnetic size and the component count. A hybrid time-sharing and distributed phase-shift control strategy is developed to modulate the ac-coupled multi-input-multi-output (MIMO) power flow. A 10-port MAC-DPP prototype was designed to support a 300 W data storage system with 10 series-stacked voltage domains. The MAC-DPP converter was tested with a 50-HDD 12TB testbench, which can maintain normal operation of the server against the worst hot-swapping scenario. The 300 W MAC-DPP prototype can achieve 99.7% peak system efficiency and over 100 W/in 3 power density.more » « less
-
This paper examines an application of a two-lane microscopic Traffic Flow (TF) simulation to comprehend the impact of the complex behavior of Dynamic Wireless Power Transfer (DWPT) charging systems onto electric power distribution grids. The proposed approach utilizes real-world data to determine a more accurate TF density at each time interval. The simulation is carried out considering all vehicles, whether electric vehicles (EVs) or non-electric, and they have a randomized lane changing behavior and fluctuating velocities following a leading car model. Three different scenarios are conducted for 5 mile, 10 mile, and 15 mile DWPT networks that are proportionally connected to an IEEE 33-bus distribution grid. Our findings indicate that EVs' average State-of-Charge (SOC) increases proportionally and significantly at each DWPT network length. Furthermore, the load demand generated from the DWPT network also increases proportionally with its length; and this increment in load demand causes adverse impacts on distribution grid voltage magnitudes exceeding operational standards that leads to equipment failure or blackout events.more » « less
-
This paper presents a nonlinear capacitive WPT system that automatically compensate for the coupling variation between the transmitter and receiver in a capacitive wireless power transfer (WPT) system with no active circuitry. The system is capable of minimizing the output power variation at a fixed operating frequency of13 MHz as the coupling distance varies. A constant output power is achieved over a wide range of coupling capacitance variation in comparison to the conventional capacitive wireless power transmission circuits. Such an approach is attractive for biomedical implants employing a capacitive WPT system.more » « less
An official website of the United States government

