skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social Community in Action: How Two Undergraduate Engineering Scholar Programs Facilitated Involvement in Communities of Practice
Background: Social community is a framework for understanding the importance of social interactions within STEM mentoring programs. This study empirically examined the relationships described in the framework to explore how program elements and social support influenced student involvement.Purpose: Specifically, the study described how two engineering scholar programs that serve underrepresented and underserved students facilitated involvement in communities of practice, a proposed outcome of the social community model.Design: A survey (n = 256) was conducted with participants in both scholar programs and compared to responses of non-participants to learn whether the scholar programs led to greater involvement in communities of practice. Furthermore, interviews (n = 16) with scholar program participants were conducted to learn more about how they became involved in communities of practice.Results: We found that program participants were more likely to be involved in the three communities of practice (student diversity organizations, peer leadership roles, and undergraduate research) than demographically similar non-program participants. Furthermore, we found that mentors (peer leaders, program coordinators, and faculty) provided the necessary social support to encourage participants’ involvement. In particular, the essential role of peer leaders initiated community building and inspired subsequent participation in communities of practice.Conclusions: The social community framework for STEM mentoring programs provides a useful guide for understanding mentoring programs and benefits from examination of case studies to expand discussion of the theory and practices that promote student involvement in communities of practice.  more » « less
Award ID(s):
2135428
PAR ID:
10563407
Author(s) / Creator(s):
; ;
Publisher / Repository:
Virginia Tech Publishing
Date Published:
Journal Name:
Studies in Engineering Education
Volume:
5
Issue:
1
ISSN:
2690-5450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    In this paper, we explore how core principles of the mentoring training offered by the Institute for Scientist & Engineer Educators (ISEE) Professional Development Program (PDP) have been adopted by PDP alumni and applied in different contexts. The core themes of the mentoring work conducted by ISEE, which are Inquiry, Equity & Inclusion, and Assessment, form an extensible basis for PDP participants to use as they develop their own mentoring programs. The panel/paper is structured to briefly identify core components of mentoring in the PDP model and then discuss how former PDP participants have applied these in a variety of other venues. With the goal of broadening access & persistence in STEM, the PDP emphasized: the role of ownership and agency, the practice of explanations, the creation of opportunities for recognition, providing formative assessment, and a recognition of and introduction to STEM culture. The PDP has had a unique way of “staying with” participants and provided a framework for mentoring in other modalities including: peer-to-peer, informal, and in the development of new formal programs. These offshoots include key PDP ideas such as: providing support for belonging in STEM, placing value on teaching, promoting adaptability and cultural relevance, and a “training the trainers” modality of mentorship. The panelists will provide examples from programs for undergraduate students, graduate students, teaching professionals, and faculty. The session also provided opportunities for attendees to share their experiences and take-away lessons from the PDP model of mentoring and some of the panel feedback is included in this paper. The ISEE community has a shared vocabulary, toolset, and ethos that continues to inform alumni mentoring since the inception of the PDP. 
    more » « less
  2. This innovative practice full paper examines mindset understandings of three cohorts of first-year student scholars in a College of Computing at a private technical Carnegie-classified Doctoral University in the northeastern United States. Grounded in theories of intelligence, a growth mindset posits that intelligence and skills can be developed through continued practice and learning, while a fixed mindset situates one with the skills they have at birth, never to evolve or grow. Thirty-two undergraduate students across three years (10 students in year one, cohort one; 10 students in year two, cohort two; and 12 students in year three, cohort three) participated in a holistic growth mindset program that included three pillars: (a) faculty-student mentoring infused with growth mindset, (b) growth-mindset augmentations to the introductory programming course and (c) a growth mindset-scholar seminar - a series of meetings where each cohort met as a group to discuss and practice activating a growth mindset. Previous work with students has focused on more limited growth mindset interventions rather than a holistic approach. Prior to the scholars arriving on campus, the faculty involved in each of the pillars were part of a Community of Practice to learn about and activate their own growth mindset. At the end of their first semester in the project, each of the student cohorts participated in a focus group to learn about their understanding and application of growth and fixed mindset. We report findings from the student scholar data after one semester of participating in the three programmatic pillars in the context of growth mindset: mentoring, programming instruction, and the scholar seminar. Summary findings from the student perspectives are described including the use of illustrative quotes, in the students' own words, serving as a powerful reminder of the importance of growth mindset and relationship building. This has implications for addressing mindset in the future by considering how the innovative practice of embedding a growth mindset holistically into mentoring, instruction and a student seminar can provide support for students that standalone interventions cannot. 
    more » « less
  3. Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N.; Strayer, J.; Drown, S. (Ed.)
    Graduate student peer-mentoring programs benefit participants by providing unique academic, social, psychological, and career development opportunities (Lorenzatti et al., 2019). However, the positive effects of research-oriented peer-mentoring programs are much better understood than teaching-oriented ones. In our poster, we consider mentees and mentors’ perceptions of effective mentoring in a teaching-oriented peer mentorship program. 
    more » « less
  4. The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents results from the program activities, including: cohort recruitment and demographics; support services; undergraduate research; vertically integrated PBL activities; and the external review of the program. Similar programs may benefit from the findings and the external review report, which contained several accolades as well as suggestions for potential continuous improvement. 
    more » « less
  5. This Birds-of-a-Feather session is for anyone interested in the NSF Scholarships in STEM (S-STEM) program, including current and former Principal Investigators (PIs) and those planning to apply. The S-STEM program funds scholarships and activities to support low-income, academically talented students in STEM. Any institution of higher education may apply, and the program supports a variety of projects. Designing and implementing a successful S-STEM project is challenging. The goal of this session is to catalyze a community of practice for S-STEM PIs. It will provide an opportunity to discuss lessons learned and best practices for proposal writing, project implementation, and providing student support. Specific topics to be discussed include the following: (1) Understanding the solicitation requirements and common proposal mistakes; (2) Scholar recruitment and data-driven approaches for selection; (3) Cohort building including activities for students from different majors or class years and integration of new students into existing cohorts; and (4) Remediation strategies including proactive interventions and peer support. Session leaders will introduce each topic; participants will then join a breakout group discussion of one topic. Lastly, participants will be invited to join a Slack workspace dedicated to S-STEM best practices and lessons. 
    more » « less