skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Generative design-enabled exploration of wireframe DNA origami nanostructures
Abstract

Recent advances in computer-aided design tools have helped rapidly advance the development of wireframe DNA origami nanostructures. Specifically, automated tools now exist that can convert an input polyhedral mesh into a DNA origami nanostructure, greatly reducing the design difficulty for wireframe DNA origami nanostructures. However, one limitation of these automated tools is that they require a designer to fully conceptualize their intended nanostructure, which may be limited by their own preconceptions. Here, a generative design framework is introduced capable of generating many wireframe DNA origami nanostructures without the need for a predefined mesh. User-defined objectives that guide the generative process are input as either single- or multi-objective optimization problems. A graph grammar is used to both contextualize physical properties of the DNA nanostructure and control the types of generated design features. This framework allows a designer to explore upon and ideate among many generated nanostructures that comply with their own unique constraints. A web-based graphical user interface is provided, allowing users to compare various generated solutions side by side in an interactive environment. Overall, this work illustrates how a constrained generative design framework can be implemented as an assistive tool in exploring design-feature trade-offs of wireframe DNA nanostructures, resulting in novel wireframe nanostructures.

 
more » « less
PAR ID:
10563466
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
53
Issue:
2
ISSN:
0305-1048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wireframe DNA origami has emerged as a powerful approach to fabricating nearly arbitrary 2D and 3D geometries at the nanometer-scale. Complex scaffold and staple routing needed to design wireframe DNA origami objects, however, render fully automated, geometry-based sequence design approaches essential for their synthesis. And wireframe DNA origami structural fidelity can be limited by wireframe edges that are composed only of one or two duplexes. Here we introduce a fully automated computational approach that programs 2D wireframe origami assemblies using honeycomb edges composed of six parallel duplexes. These wireframe assemblies show enhanced structural fidelity from electron microscopy-based measurement of programmed angles compared with identical geometries programmed using dual-duplex edges. Molecular dynamics provides additional theoretical support for the enhanced structural fidelity observed. Application of our top-down sequence design procedure to a variety of complex objects demonstrates its broad utility for programmable 2D nanoscale materials.

     
    more » « less
  2. DNA nanotechnology has broad applications in biomedical drug delivery and pro- grammable materials. Characterization of the self-assembly of DNA origami and quan- tum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchi- cal nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multi-meric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of differ- ent multi-meric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis. 
    more » « less
  3. Abstract Although the field of structural DNA nanotechnology has been advancing with an astonishing pace, de novo design of complex 3D nanostructures and functional devices remains a laborious and time-consuming process. One reason for that is the need for multiple cycles of experimental characterization to elucidate the effect of design choices on the actual shape and function of the self-assembled objects. Here, we demonstrate a multi-resolution simulation framework, mrdna, that, in 30 min or less, can produce an atomistic-resolution structure of a self-assembled DNA nanosystem. We demonstrate fidelity of our mrdna framework through direct comparison of the simulation results with the results of cryo-electron microscopy (cryo-EM) reconstruction of multiple 3D DNA origami objects. Furthermore, we show that our approach can characterize an ensemble of conformations adopted by dynamic DNA nanostructures, the equilibrium structure and dynamics of DNA objects constructed using off-lattice self-assembly principles, i.e. wireframe DNA objects, and to study the properties of DNA objects under a variety of environmental conditions, such as applied electric field. Implemented as an open source Python package, our framework can be extended by the community and integrated with DNA design and molecular graphics tools. 
    more » « less
  4. Abstract

    Hybrid RNA:DNA origami, in which a long RNA scaffold strand folds into a target nanostructure via thermal annealing with complementary DNA oligos, has only been explored to a limited extent despite its unique potential for biomedical delivery of mRNA, tertiary structure characterization of long RNAs, and fabrication of artificial ribozymes. Here, we investigate design principles of three-dimensional wireframe RNA-scaffolded origami rendered as polyhedra composed of dual-duplex edges. We computationally design, fabricate, and characterize tetrahedra folded from an EGFP-encoding messenger RNA and de Bruijn sequences, an octahedron folded with M13 transcript RNA, and an octahedron and pentagonal bipyramids folded with 23S ribosomal RNA, demonstrating the ability to make diverse polyhedral shapes with distinct structural and functional RNA scaffolds. We characterize secondary and tertiary structures using dimethyl sulfate mutational profiling and cryo-electron microscopy, revealing insight into both global and local, base-level structures of origami. Our top-down sequence design strategy enables the use of long RNAs as functional scaffolds for complex wireframe origami.

     
    more » « less
  5. Abstract

    DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures, where long single-stranded DNA is folded into a compact nanostructure, present an attractive approach to package genes; however, effective delivery of genetic material into cell nuclei has remained a critical challenge. Here, we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR–Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore, our study validates virus-like particles as an efficient method of DNA nanostructure delivery, opening the possibility of delivering nanostructures in vivo to specific cell types. Together, these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates, exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions, such as biosensing, into cell nuclei.

     
    more » « less