We study numerical approximations of the reactive Euler equations of gas dynamics. In addition to shock, contact and rarefaction waves, these equations admit detonation waves appearing at the interface between different fractions of the reacting species. It is well-known that in order to resolve the reaction zone numerically, one has to take both space and time stepsizes to be proportional to the reaction time, which may cause the numerical method to become very computationally expensive or even impractical when the reaction is fast. Therefore, it is necessary to develop underresolved numerical methods, which are capable of accurately predicting locations of the detonation waves without resolving their detailed structure. One can distinguish between two different degrees of stiffness. In the stiff case, the reaction time is very small, while in the extremely stiff case, the reaction is assumed to occur instantaneously. In [A. Kurganov, in Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003], we proposed a simple underresolved method—an accurate deterministic projection (ADP) method—for one-dimensional hyperbolic systems with stiff source terms including the reactive Euler equations in the extremely stiff regime. In this paper, we extend the ADP method to the (non-extremely) stiff case, multispecies detonation models, and the two-dimensional reactive Euler equations in all of the aforementioned regimes. We also investigate ways to distinguish between different regimes in practice as well as study the limitations of the proposed ADP methods with respect to the ignition temperature. We demonstrate the accuracy and robustness of the ADP methods in a number of numerical experiments with both relatively low and large ignition temperature, and illustrate the difficulties one may face when the ignition temperature is low.
more »
« less
Detonation cell size estimation via chemiluminescence imaging in an optically accessible linear detonation tube
- Award ID(s):
- 2135789
- PAR ID:
- 10563486
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Experiments in Fluids
- Volume:
- 65
- Issue:
- 7
- ISSN:
- 0723-4864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028M⊙with a massive white dwarf companion,MWD= 0.725 ± 0.026M⊙. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92M⊙with a thick helium layer of 0.17M⊙. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.more » « less
-
Vibrational and rotational temperatures in various detonation conditions involving diluted hydrogen-oxygen mixtures were studied in a microscale detonation tube using hybrid fem- tosecond/picosecond Coherent anti-Stokes Raman scattering (hybrid fs/ps CARS). Measured temperatures at various locations behind the shockwave were compared to Chapman-Jouguet conditions as predicted by equilibrium calculations. Simultaneous shadowgraphy was also employed to establish timing between the detonation wave and laser beams. Comparison between vibrational nitrogen and oxygen thermometry were made for detonations in the same gas mixture. Oxygen rotational temperature was measured and compared to vibrational temperature measured in a similar gas mixture.more » « less
-
This paper numerically investigates the evaporation characteristics of a single n-dodecane fuel droplet in high-pressure nitrogen environment relevant to rotating detonation engines. A validated computational fluid dynamics solver coupled with real-fluid thermophysical models is utilized. The effects of pressure, droplet temperature, and ambient gas temperature on the evaporation rate are analyzed by tracking the droplet diameter evolution. Two interface tracking techniques, namely a mean density-based method and a novel vapor-liquid equilibrium-based method, are implemented and compared. The results show appreciable deviations from the classical d2-law for droplet evaporation. Increasing the ambient temperature and droplet temperature (toward critical point) substantially accelerate the evaporation process. Meanwhile, higher pressures decrease the evaporation rate owing to slower species/thermal diffusions. At certain conditions, discernible differences are observed between the two interface tracking methods indicating deficiencies in the simple mean density approach. The paper demonstrates an effective computational framework for transcritical droplet evaporation simulations. And the generated high-pressure droplet evaporation datasets can inform sub-model development for spray combustion modeling.more » « less
An official website of the United States government

