skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precambrian to Pleistocene 40Ar/39Ar dating of clinopyroxene-hosted melt inclusions
Abstract Clinopyroxene is a rock-forming mineral that commonly hosts melt inclusions in mafic to intermediate composition volcanic and plutonic rocks. It is highly resistant to alteration compared to other co-existing phenocrysts such as plagioclase. Several recent studies have 40Ar/39Ar dated clinopyroxene in Neoproterozoic to Miocene basalts and dolerites. To assess the viability of the technique at the youngest end of the geologic time scale, we performed 40Ar/39Ar incremental heating experiments on clinopyroxene-hosted melt inclusions from a variety of mafic lithologies and tectonic settings. Most samples produced precise plateau ages including several Quaternary basalts to andesites as young as 0.6 Ma. All data are indistinguishable from new and/or published 40Ar/39Ar ages on groundmass or plagioclase from the same samples. The source of potassium (K) and resulting 40Ar* within clinopyroxene has been debated, but thus far has only been inferred based on 40Ar/39Ar data. Using electron probe microanalysis (EPMA) we show that there is negligible K in the clinopyroxene host, but substantial K (e.g., 1–4 wt%) in trapped melt inclusions and minor amounts in plagioclase inclusions. Thus, melt inclusions, which are common in phenocrysts in basaltic magmas, can be used to obtain accurate and precise 40Ar/39Ar ages for difficult-to-date volcanic and plutonic rocks from the Precambrian to the Pleistocene.  more » « less
Award ID(s):
2135694
PAR ID:
10563491
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geology
Volume:
52
Issue:
4
ISSN:
0091-7613
Page Range / eLocation ID:
287 to 291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sun, Weeding (Ed.)
    Interaction of a subduction zone with an oceanic plateau has implications for plate tectonics. However, the geodynamic processes and petrological responses to oceanic plateau–arc interactions remain enigmatic. The southwestern Mariana and Yap arcs have experienced interactions with the Caroline Plateau, which have affected the regional tectonism. In this study, tholeiitic basalts and metamorphosed volcanic rocks (i.e., greenstones) were recovered from the southwestern Mariana forearc. The protoliths of the metamorphosed volcanic rocks have geochemical affinities to low-silica boninites. These boninitic rocks have similar K–Ar and apatite U–Pb ages of ca. 24 Ma, which record the timing of collision between the southwestern Mariana arc and the Caroline Plateau. 40Ar/39Ar dating of plagioclase in the tholeiitic basalts dates post-collisional magmatism to ca. 18 Ma. The tholeiites have geochemical signatures of fore-arc basalts (e.g., low Ti/V ratios and light rare earth element-depleted patterns) and high Th/Yb ratios, which reflect a depleted mantle source with a subduction component inherited from a pre-collisional subduction event. We suggest that the southwestern Mariana arc is an intra-oceanic arc that underwent plateau–arc collisions. These plateau–arc interactions affected the tectonic and magmatic evolution of the southwestern Mariana arc and nearby western Pacific basins. 
    more » « less
  2. We examined the mineralogical, chemical and isotopic compositions of secondary fluid inclusions in olivine-rich rocks from two active serpentinization systems: the Von Damm hydrothermal field (Mid-Cayman Rise) and the Zambales ophiolite (Philippines). Peridotite, troctolite and gabbroic rocks in these systems contain abundant CH 4 -rich secondary inclusions in olivine, with less abundant inclusions in plagioclase and clinopyroxene. Olivine-hosted secondary inclusions are chiefly composed of CH 4 and minor H 2 , in addition to secondary minerals including serpentine, brucite, magnetite and carbonates. Secondary inclusions in plagioclase are dominated by CH 4 with variable amounts of H 2 and H 2 O, while those in clinopyroxene contain only CH 4 . We determined hydrocarbon abundances and stable carbon isotope compositions by crushing whole rocks and analysing the released volatiles using isotope ratio monitoring—gas chromatography mass spectrometry. Bulk rock gas analyses yielded appreciable quantities of CH 4 and C 2 H 6 in samples from Cayman (4–313 nmol g −1 CH 4 and 0.02–0.99 nmol g −1 C 2 H 6 ), with lesser amounts in samples from Zambales (2–37 nmol g −1 CH 4 and 0.004–0.082 nmol g −1 C 2 H 6 ). Mafic and ultramafic rocks at Cayman exhibit δ 13 C CH 4 values of −16.7‰ to −4.4‰ and δ 13 C C 2 H 6 values of −20.3‰ to +0.7‰. Ultramafic rocks from Zambales exhibit δ 13 C CH 4 values of −12.4‰ to −2.8‰ and δ 13 C C 2 H 6 values of −1.2‰ to −0.9‰. Similarities in the carbon isotopic compositions of CH 4 and C 2 H 6 in plutonic rocks, Von Damm hydrothermal fluids, and Zambales gas seeps suggest that leaching of fluid inclusions may provide a significant contribution of abiotic hydrocarbons to deep-sea vent fluids and ophiolite-hosted gas seeps. Isotopic compositions of CH 4 and C 2 H 6 from a variety of hydrothermal fields hosted in olivine-rich rocks that are similar to those in Von Damm vent fluids further support the idea that a significant portion of abiotic hydrocarbons in ultramafic-influenced vent fluids is derived from fluid inclusions. This article is part of a discussion meeting issue ‘Serpentinite in the Earth system’. 
    more » « less
  3. Abstract The Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT(=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔTfor all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings. 
    more » « less
  4. The Mesozoic–Cenozoic convergent margin history of southern Alaska has been dominated by arc magmatism, terrane accretion, strike-slip fault systems, and possible spreading-ridge subduction. We apply 40Ar/39Ar, apatite fission-track (AFT), and apatite (U-Th)/He (AHe) geochronology and thermochronology to plutonic and volcanic rocks in the southern Talkeetna Mountains of Alaska to document regional magmatism, rock cooling, and inferred exhumation patterns as proxies for the region’s deformation history and to better delineate the overall tectonic history of southern Alaska. High-temperature 40Ar/39Ar thermochronology on muscovite, biotite, and K-feldspar from Jurassic granitoids indicates postemplacement (ca. 158–125 Ma) cooling and Paleocene (ca. 61 Ma) thermal resetting. 40Ar/39Ar whole-rock volcanic ages and 45 AFT cooling ages in the southern Talkeetna Mountains are predominantly Paleocene–Eocene, suggesting that the mountain range has a component of paleotopography that formed during an earlier tectonic setting. Miocene AHe cooling ages within ~10 km of the Castle Mountain fault suggest ~2–3 km of vertical displacement and that the Castle Mountain fault also contributed to topographic development in the Talkeetna Mountains, likely in response to the flat-slab subduction of the Yakutat microplate. Paleocene–Eocene volcanic and exhumation-related cooling ages across southern Alaska north of the Border Ranges fault system are similar and show no S-N or W-E progressions, suggesting a broadly synchronous and widespread volcanic and exhumation event that conflicts with the proposed diachronous subduction of an active west-east–sweeping spreading ridge beneath south-central Alaska. To reconcile this, we propose a new model for the Cenozoic tectonic evolution of southern Alaska. We infer that subparallel to the trench slab breakoff initiated at ca. 60 Ma and led to exhumation, and rock cooling synchronously across south-central Alaska, played a primary role in the development of the southern Talkeetna Mountains, and was potentially followed by a period of southern Alaska transform margin tectonics. 
    more » « less
  5. Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common. 
    more » « less