skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing

Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains ofCaenorhabditis eleganscommonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and humanα-synuclein), a model for Parkinson’s research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in theC. elegansreference and 99.5% of the annotatedC. elegansreference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenicC. elegansgenomes presented here will be a valuable resource for Parkinson’s research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains.

 
more » « less
Award ID(s):
2327488
PAR ID:
10563511
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
12
ISSN:
2167-8359
Page Range / eLocation ID:
e18100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant–plant interactions and molecular trafficking. However, a major barrier toC. campestrisresearch is that a method to generate stable transgenic plants has not yet been developed.

    Here, we describe the development of aCuscutatransformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2andCcGRF/GIF), leading to a robust protocol forAgrobacterium‐mediatedC. campestristransformation.

    The stably transformed and regenerated RUBYC. campestrisplants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T‐DNA integration in the parasite genome were confirmed through TAIL‐PCR. TransformedC. campestrisalso produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for theAgrobacterium‐mediated transformation, but may also provide insight into the movement of molecules fromC. campestristo the host during parasitism.

    Thus, the protocol for transformation ofC. campestrisreported here overcomes a major obstacle toCuscutaresearch and opens new possibilities for studying parasitic plants and their interactions with hosts.

     
    more » « less
  2. Yeh, Shu-Dan (Ed.)
    Abstract The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome-conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae. 
    more » « less
  3. Kim, J (Ed.)
    Abstract Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/. 
    more » « less
  4. Abstract The diatom, Cyclotella cryptica, is a well-established model species for physiological studies and biotechnology applications of diatoms. To further facilitate its use as a model diatom, we report an improved reference genome assembly and annotation for C. cryptica strain CCMP332. We used a combination of long- and short-read sequencing to assemble a high-quality and contaminant-free genome. The genome is 171 Mb in size and consists of 662 scaffolds with a scaffold N50 of 494 kb. This represents a 176-fold decrease in scaffold number and 41-fold increase in scaffold N50 compared to the previous assembly. The genome contains 21,250 predicted genes, 75% of which were assigned putative functions. Repetitive DNA comprises 59% of the genome, and an improved classification of repetitive elements indicated that a historically steady accumulation of transposable elements has contributed to the relatively large size of the C. cryptica genome. The high-quality C. cryptica genome will serve as a valuable reference for ecological, genetic, and biotechnology studies of diatoms. 
    more » « less
  5. Abstract

    Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in aC. elegansnematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.

     
    more » « less