skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein
Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI’s unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.  more » « less
Award ID(s):
2043248
PAR ID:
10563521
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
International Journal of Molecular Sciences
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
25
Issue:
11
ISSN:
1422-0067
Page Range / eLocation ID:
5651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transient plant enzyme complexes formed via protein-protein interactions (PPIs) play crucial regulatory roles in secondary metabolism. Complexes assembled on cytochrome P450s (CYPs) are challenging to characterize metabolically due to difficulties in decoupling the PPIs’ metabolic impacts from the CYPs’ catalytic activities. Here, we developed a yeast-based synthetic biology approach to elucidate the metabolic roles of PPIs between a soybean-derived CYP, isoflavone synthase (GmIFS2), and other enzymes in isoflavonoid metabolism. By reconstructing multiple complex variants with an inactive GmIFS2 in yeast, we found that GmIFS2-mediated PPIs can regulate metabolic flux between two competing pathways producing deoxyisoflavonoids and isoflavonoids. Specifically, GmIFS2 can recruit chalcone synthase (GmCHS7) and chalcone reductase (GmCHR5) to enhance deoxyisoflavonoid production or GmCHS7 and chalcone isomerase (GmCHI1B1) to enhance isoflavonoid production. Additionally, we identified and characterized two novel isoflavoneO-methyltransferases interacting with GmIFS2. This study highlights the potential of yeast synthetic biology for characterizing CYP-mediated complexes. 
    more » « less
  2. Glioblastoma (GBM) has a dismal prognosis and successful elimination of GBM stem cells (GSCs) is a high-priority as these cells are responsible for tumor regrowth following therapy and ultimately patient relapse. Natural products and their derivatives continue to be a source for the development of effective anticancer drugs and have been shown to effectively target pathways necessary for cancer stem cell self-renewal and proliferation. We generated a series of curcumin inspired bis-chalcones and examined their effect in multiple patient-derived GSC lines. Of the 19 compounds synthesized, four analogs robustly induced GSC death in six separate GSC lines, with a half maximal inhibitory concentration (IC50) ranging from 2.7–5.8 μM and significantly reduced GSC neurosphere formation at sub-cytotoxic levels. Structural analysis indicated that the presence of a methoxy group at position 3 of the lateral phenylic appendages was important for activity. Pathway and drug connectivity analysis of gene expression changes in response to treatment with the most active bis-chalcone 4j (the 3,4,5 trimethoxy substituted analog) suggested that the mechanism of action was the induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) mediated cell death. This was confirmed by Western blot analysis in which 4j induced robust increases in CHOP, p-jun and caspase 12. The UPR is believed to play a significant role in GBM pathogenesis and resistance to therapy and as such represents a promising therapeutic target. 
    more » « less
  3. Xylose isomerase (XI) is an industrially important metalloprotein studied for decades. Its reaction mechanism has been postulated to involve movement of the catalytic metal cofactor to several different conformations. Here, a dose-dependent approach was used to investigate the radiation damage effects on XI and their potential influence on the reaction mechanism interpreted from the X-ray derived structures. Radiation damage is still one of the major challenges for X-ray diffraction experiments and causes both global and site-specific damage. In this study, consecutive high-resolution data sets from a single XI crystal from the same wedge were collected at 100 K and the progression of radiation damage was tracked over increasing dose (0.13–3.88 MGy). The catalytic metal and its surrounding amino acid environment experience a build-up of free radicals, and the results show radiation-damage-induced structural perturbations ranging from an absolute metal positional shift to specific residue motions in the active site. The apparent metal movement is an artefact of global damage and the resulting unit-cell expansion, but residue motion appears to be driven by the dose. Understanding and identifying radiation-induced damage is an important factor in accurately interpreting the biological conclusions being drawn. 
    more » « less
  4. Following decades of insights from structure–function studies, there is now a need to progress from a static to dynamic view of enzymes. Comparison of prior cryo X-ray structures suggested that deleterious effects from ketosteroid isomerase (KSI) mutants arise from misalignment of the oxyanion hole catalytic residue, Y16. However, multi-conformer models from room temperature X-ray diffraction revealed an ensemble of Y16 conformers indistinguishable from WT for Y32F/Y57F KSI and a distinct, non-native ensemble for Y16 in Y57F KSI. Functional analyses suggested rate effects arise from weakened hydrogen bonding, due to disruption of the Y16/Y57/Y32 hydrogen bond network, and repositioning of the general base. In general, catalytic changes can be deconvoluted into effects on the probability of occupying a state (P-effects) and the reactivity of each state (k-effects). Our results underscore the need for ensemble–function analysis to decipher enzyme function and ultimately manipulate their extraordinary capabilities. 
    more » « less
  5. The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. 
    more » « less