skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PSSR2: a user-friendly Python package for democratizing deep learning-based point-scanning super-resolution microscopy
Abstract BackgroundTo address the limitations of large-scale high quality microscopy image acquisition, PSSR (Point-Scanning Super-Resolution) was introduced to enhance easily acquired low quality microscopy data to a higher quality using deep learning-based methods. However, while PSSR was released as open-source, it was difficult for users to implement into their workflows due to an outdated codebase, limiting its usage by prospective users. Additionally, while the data enhancements provided by PSSR were significant, there was still potential for further improvement. MethodsTo overcome this, we introduce PSSR2, a redesigned implementation of PSSR workflows and methods built to put state-of-the-art technology into the hands of the general microscopy and biology research community. PSSR2 enables user-friendly implementation of super-resolution workflows for simultaneous super-resolution and denoising of undersampled microscopy data, especially through its integrated Command Line Interface and Napari plugin. PSSR2 improves and expands upon previously established PSSR algorithms, mainly through improvements in the semi-synthetic data generation (“crappification”) and training processes. ResultsIn benchmarking PSSR2 on a test dataset of paired high and low resolution electron microscopy images, PSSR2 super-resolves high-resolution images from low-resolution images to a significantly higher accuracy than PSSR. The super-resolved images are also more visually representative of real-world high-resolution images. DiscussionThe improvements in PSSR2, in providing higher quality images, should improve the performance of downstream analyses. We note that for accurate super-resolution, PSSR2 models should only be applied to super-resolve data sufficiently similar to training data and should be validated against real-world ground truth data.  more » « less
Award ID(s):
2014862
PAR ID:
10563824
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Methods
Volume:
2
Issue:
1
ISSN:
3004-8729
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supervised deep-learning models have enabled super-resolution imaging in several microscopic imaging modalities, increasing the spatial lateral bandwidth of the original input images beyond the diffraction limit. Despite their success, their practical application poses several challenges in terms of the amount of training data and its quality, requiring the experimental acquisition of large, paired databases to generate an accurate generalized model whose performance remains invariant to unseen data. Cycle-consistent generative adversarial networks (cycleGANs) are unsupervised models for image-to-image translation tasks that are trained on unpaired datasets. This paper introduces a cycleGAN framework specifically designed to increase the lateral resolution limit in confocal microscopy by training a cycleGAN model using low- and high-resolution unpaired confocal images of human glioblastoma cells. Training and testing performances of the cycleGAN model have been assessed by measuring specific metrics such as background standard deviation, peak-to-noise ratio, and a customized frequency content measure. Our cycleGAN model has been evaluated in terms of image fidelity and resolution improvement using a paired dataset, showing superior performance than other reported methods. This work highlights the efficacy and promise of cycleGAN models in tackling super-resolution microscopic imaging without paired training, paving the path for turning home-built low-resolution microscopic systems into low-cost super-resolution instruments by means of unsupervised deep learning. 
    more » « less
  2. Abstract PSSR2 improves and expands on the previously established PSSR (Point-Scanning Super-Resolution) workflow for simultaneous super-resolution and denoising of undersampled microscopy data. PSSR2 is designed to put state-of-the-art technology into the hands of the general microscopy and biology research community, enabling user-friendly implementation of PSSR workflows with little to no programming experience required, especially through its integrated CLI and Napari plugin. 
    more » « less
  3. Abstract The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications. 
    more » « less
  4. Background Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Conclusions Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM. 
    more » « less
  5. Abstract MotivationSingle-cell Hi-C (scHi-C) data provide critical insights into chromatin interactions at individual cell levels, uncovering unique genomic 3D structures. However, scHi-C datasets are characterized by sparsity and noise, complicating efforts to accurately reconstruct high-resolution chromosomal structures. In this study, we present ScUnicorn, a novel blind super-resolution framework for scHi-C data enhancement. ScUnicorn uses an iterative degradation kernel optimization process, unlike traditional super-resolution approaches, which rely on downsampling, predefined degradation ratios, or constant assumptions about the input data to reconstruct high-resolution interaction matrices. Hence, our approach more reliably preserves critical biological patterns and minimizes noise. Additionally, we propose 3DUnicorn, a maximum likelihood algorithm that leverages the enhanced scHi-C data to infer precise 3D chromosomal structures. ResultsOur evaluation demonstrates that ScUnicorn achieves superior performance over the state-of-the-art methods in terms of Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and GenomeDisco scores. Moreover, 3DUnicorn’s reconstructed structures align closely with experimental 3D-FISH data, underscoring its biological relevance. Together, ScUnicorn and 3DUnicorn provide a robust framework for advancing genomic research by enhancing scHi-C data fidelity and enabling accurate 3D genome structure reconstruction. Availability and implementationUnicorn implementation is publicly accessible at https://github.com/OluwadareLab/Unicorn. 
    more » « less