Finding Nash equilibrial policies for two-player differential games requires solving Hamilton-Jacobi-Isaacs (HJI) PDEs. Self-supervised learning has been used to approximate solutions of such PDEs while circumventing the curse of dimensionality. However, this method fails to learn discontinuous PDE solutions due to its sampling nature, leading to poor safety performance of the resulting controllers in robotics applications when player rewards are discontinuous. This paper investigates two potential solutions to this problem: a hybrid method that leverages both supervised Nash equilibria and the HJI PDE, and a value-hardening method where a sequence of HJIs are solved with a gradually hardening reward. We compare these solutions using the resulting generalization and safety performance in two vehicle interaction simulation studies with 5D and 9D state spaces, respectively. Results show that with informative supervision (e.g., collision and near-collision demonstrations) and the low cost of self-supervised learning, the hybrid method achieves better safety performance than the supervised, self-supervised, and value hardening approaches on equal computational budget. Value hardening fails to generalize in the higher-dimensional case without informative supervision. Lastly, we show that the neural activation function needs to be continuously differentiable for learning PDEs and its choice can be case dependent.
more »
« less
This content will become publicly available on July 15, 2025
Pontryagin neural operator for solving general-sum differential games with parametric state constraints
The values of two-player general-sum differential games are viscosity solutions to Hamilton-Jacobi-Isaacs (HJI) equations. Value and policy approximations for such games suffer from the curse of dimensionality (CoD). Alleviating CoD through physics-informed neural networks (PINN) encounters convergence issues when value discontinuity is present due to state constraints. On top of these challenges, it is often necessary to learn generalizable values and policies across a parametric space of games, eg, for game parameter inference when information is incomplete. To address these challenges, we propose in this paper a Pontryagin-mode neural operator that outperforms existing state-of-the-art (SOTA) on safety performance across games with parametric state constraints. Our key contribution is the introduction of a costate loss defined on the discrepancy between forward and backward costate rollouts, which are computationally cheap. We show that the discontinuity of costate dynamics (in the presence of state constraints) effectively enables the learning of discontinuous values, without requiring manually supervised data as suggested by the current SOTA. More importantly, we show that the close relationship between costates and policies makes the former critical in learning feedback control policies with generalizable safety performance.
more »
« less
- Award ID(s):
- 2101052
- PAR ID:
- 10564601
- Publisher / Repository:
- 6th Annual Learning for Dynamics & Control Conference
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the "Actor Divergence" issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings.more » « less
-
Offline safe reinforcement learning (OSRL) aims to learn policies with high rewards while satisfying safety constraints solely from data collected offline. However, the learned policies often struggle to handle states and actions that are not present or out-of-distribution (OOD) from the offline dataset, which can result in violation of the safety constraints or overly conservative behaviors during their online deployment. Moreover, many existing methods are unable to learn policies that can adapt to varying constraint thresholds. To address these challenges, we propose constraint-conditioned actor-critic (CCAC), a novel OSRL method that models the relationship between state-action distributions and safety constraints, and leverages this relationship to regularize critics and policy learning. CCAC learns policies that can effectively handle OOD data and adapt to varying constraint thresholds. Empirical evaluations on the benchmarks show that CCAC significantly outperforms existing methods for learning adaptive, safe, and high-reward policies.more » « less
-
Mean-field games (MFGs) are developed to model the decision-making processes of a large number of interacting agents in multi-agent systems. This paper studies mean-field games on graphs (G-MFGs). The equilibria of G-MFGs, namely, mean-field equilibria (MFE), are challenging to solve for their high-dimensional action space because each agent has to make decisions when they are at junction nodes or on edges. Furthermore, when the initial population state varies on graphs, we have to recompute MFE, which could be computationally challenging and memory-demanding. To improve the scalability and avoid repeatedly solving G-MFGs every time their initial state changes, this paper proposes physics-informed graph neural operators (PIGNO). The PIGNO utilizes a graph neural operator to generate population dynamics, given initial population distributions. To better train the neural operator, it leverages physics knowledge to propagate population state transitions on graphs. A learning algorithm is developed, and its performance is evaluated on autonomous driving games on road networks. Our results demonstrate that the PIGNO is scalable and generalizable when tested under unseen initial conditions.more » « less
-
Griffith, Gary (Ed.)Abstract The stock–recruitment relationship is the basis of any stock prediction and thus fundamental for fishery management. Traditional parametric stock–recruitment models often poorly fit empirical data, nevertheless they are still the rule in fish stock assessment procedures. We here apply a multi-model approach to predict recruitment of 20 Atlantic cod (Gadus morhua) stocks as a function of adult biomass and environmental variables. We compare the traditional Ricker model with two non-parametric approaches: (i) the stochastic cusp model from catastrophe theory and (ii) multivariate simplex projections, based on attractor state-space reconstruction. We show that the performance of each model is contingent on the historical dynamics of individual stocks, and that stocks which experienced abrupt and state-dependent dynamics are best modelled using non-parametric approaches. These dynamics are pervasive in Western stocks highlighting a geographical distinction between cod stocks, which have implications for their recovery potential. Furthermore, the addition of environmental variables always improved the models’ predictive power indicating that they should be considered in stock assessment and management routines. Using our multi-model approach, we demonstrate that we should be more flexible when modelling recruitment and tailor our approaches to the dynamical properties of each individual stock.more » « less