Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical processes. The autonomy and self-adaptation capabilities of CPS mark a significant evolution from traditional control systems. Machine learning significantly enhances the functionality and efficiency of Cyber-Physical Systems (CPS). Large Language Models (LLM), like GPT-4, can augment CPS’s functionality to a new level by providing advanced intelligence support. This fact makes the applications above potentially unsafe and thus untrustworthy if deployed to the real world. We propose a comprehensive and general assurance framework for LLM-enabled CPS. The framework consists of three modules: (i) the context grounding module assures the task context has been accurately grounded (ii) the temporal Logic requirements specification module forms the temporal requirements into logic specifications for prompting and further verification (iii) the formal verification module verifies the output of the LLM and provides feedback as a guideline for LLM. The three modules execute iteratively until the output of LLM is verified. Experiment results demonstrate that our assurance framework can assure the LLM-enabled CPS. 
                        more » 
                        « less   
                    This content will become publicly available on November 25, 2025
                            
                            MLTL Multi-type: A Typed Logic for Cyber-Physical Systems
                        
                    
    
            Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic (MLTL) intuitively express CPSoS requirements for automated system verification and validation. However, both LTL and MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or distance), and agree on a standard “time” step. Formal verification of cyber-physical systems-of-systems needs validate-able requirements expressed over (sub-)system signals of different types, such as signals sampled at different timescales, distances, or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types (e.g., timescales) by sacrificing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a verbal and formal specification will ease validation, reduce bugs, increase productivity, and linearize the workflow from a project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Verification Workshop, 2022), a logic building on MLTL. MLTLM enables writing formal requirements over finite input signals (e.g., sensor signals and local computations) of different types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a direct correspondence between a verbal requirement and its corresponding formal specification. Additionally, reasoning a formal specification in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use significantly less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples on types (e.g., time and space) expressed in the same specification, (2) proofs omitted for space in the workshop version, (3) proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2038903
- PAR ID:
- 10564631
- Publisher / Repository:
- Association for Computing Machinery
- Date Published:
- Journal Name:
- ACM Transactions on Embedded Computing Systems
- ISSN:
- 1539-9087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present algorithms for Cyber-Physical Systems (CPS) falsification and control, which take advantage of knowing the entire language of the temporal logic specification - that is, the set of signals that satisfy the formula. In the design of CPS, falsification and control play key roles. Falsification is a testing task, where the goal is to find an input signal that causes the system's output trajectory to violate the correctness requirements. Control is the dual task, where the goal is to find an input signal that causes the system's output to satisfy the specification. When the specification is expressed in a temporal logic, most existing work relies on local optimization heuristics to perform both tasks. In this paper, we explore whether a different expression of the specification offers advantages when performing falsification and control. Recent work presented a method for computing a representation of the language of a formula in (discrete-time) Signal Temporal Logic (STL), showing that the language can be represented as a union of polytopes. We introduce new falsification algorithms which combine distance information to the different components of the language to accelerate the convergence to a falsifier. And we introduce a new algorithm for computing a satisfying control signal which works by repeatedly projecting violating output trajectories back onto the language's components. Moreover, these algorithms are trivially parallelizable to take advantage of multiple processors. Despite their relative simplicity, our algorithms demonstrate 10x to 100x speedups relative to the state-of-the-art.more » « less
- 
            Hardware verification of modern electronic systems has been identified as a major bottleneck due to the increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based verification is a promising avenue for efficient hardware validation and debug. In this paper, we provide a comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline how to define assertions using temporal logic to specify expected behaviors in different abstraction levels. Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying both functional and non-functional requirements.more » « less
- 
            Specifying and verifying the temporal properties of UML-based systems can be challenging. Although there exist some extensions of OCL to support the specification of temporal properties in UML-based notations, most of the approaches depend on using non-UML formal formalisms such as LTL, CTL, and CTL* while transforming the under-development UML models into non-UML model checking frameworks for verification. This approach introduces complexities and relies on techniques and tools that are not within the UML spectrum. In this paper, we show how TOCL (one OCL extension for temporal properties specification) can be transformed into OCL for verification purposes. Towards this end, we created a formal EBNF grammar for TOCL, based on which a parser and a MOF metamodel were generated for the language. Additionally, to facilitate the analysis of the TOCL properties, we formally defined transformation rules from TOCL metamodel to OCL metamodel using QVT. Finally, we validated the implementations of the transformation rules using USE.more » « less
- 
            LTL synthesis is the problem of synthesizing a reactive system from a formal specification in Linear Temporal Logic. The extension of allowing for partial observability, where the system does not have direct access to all relevant information about the environment, allows generalizing this problem to a wider set of real-world applications, but the difficulty of implementing such an extension in practice means that it has remained in the realm of theory. Recently, it has been demonstrated that restricting LTL synthesis to systems with finite executions by using LTL with finite-horizon semantics (LTLf) allows for significantly simpler implementations in practice. With the conceptual simplicity of LTLf, it becomes possible to explore extensions such as partial observability in practice for the first time. Previous work has analyzed the problem of LTLf synthesis under partial observability theoretically and suggested two possible algorithms, one with 3EXPTIME and another with 2EXPTIME complexity. In this work, we first prove a complexity lower bound conjectured in earlier work. Then, we complement the theoretical analysis by showing how the two algorithms can be integrated in practice into an established framework for LTLf synthesis. We furthermore identify a third, MSO-based, approach enabled by this framework. Our experimental evaluation reveals very different results from what the theory seems to suggest, with the 3EXPTIME algorithm often outperforming the 2EXPTIME approach. Furthermore, as long as it is able to overcome an initial memory bottleneck, the MSO-based approach can often outperforms the others.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
