This paper introduces Shelley, a novel model checking framework used to verify the order of function calls, developed in the context of Cyber-Physical Systems (CPS). Shelley infers the model directly from MicroPython code, so as to simplify the process of checking requirements expressed in a temporal logic. Applications for CPS need to reason about the end of execution to verify the reclamation/release of physical resources, so our temporal logic is stated on finite traces. Lastly, Shelley infers the behavior from code using an inter-procedural and compositional analysis, thus supporting the usual object-oriented programming techniques employed in MicroPython code. To evaluate our work, we present an experience report on an industrial application and evaluate the bounds of the validity checks (up to subsystems under 10 s on a desktop computer).
more »
« less
This content will become publicly available on May 13, 2025
Poster Abstract: Assuring LLM-Enabled Cyber-Physical Systems
Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical processes. The autonomy and self-adaptation capabilities of CPS mark a significant evolution from traditional control systems. Machine learning significantly enhances the functionality and efficiency of Cyber-Physical Systems (CPS). Large Language Models (LLM), like GPT-4, can augment CPS’s functionality to a new level
by providing advanced intelligence support. This fact makes the applications above potentially unsafe and thus untrustworthy if deployed to the real world. We propose a comprehensive and general assurance framework for LLM-enabled CPS. The framework consists of three modules: (i) the context grounding module assures the task context has been accurately grounded (ii) the temporal Logic requirements specification module forms the temporal requirements into logic specifications for
prompting and further verification (iii) the formal verification module verifies the output of the LLM and provides feedback as a guideline for LLM. The three modules execute iteratively until the output of LLM is verified. Experiment results demonstrate that our assurance framework can assure the LLM-enabled CPS.
more »
« less
- Award ID(s):
- 2333980
- PAR ID:
- 10499419
- Publisher / Repository:
- ACM/IEEE
- Date Published:
- Journal Name:
- ACM/IEEE International Conference on Cyber-Physical Systems
- Format(s):
- Medium: X
- Location:
- Hong Kong, China
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cyber-Physical Systems (CPS) integrate computational elements with physical processes via sensors and actuators. While CPS is expected to have human-level intelligence, traditional machine learning which is trained on specific and isolated datasets seems insufficient to meet such expectation. In recent years, Large Language Models (LLMs), like GPT-4, have experienced explosive growth and show significant improvement in reasoning and language comprehension capabilities which promotes LLM-enabled CPS. In this paper, we present a comprehensive review of these studies about LLM-enabled CPS. First, we overview LLM-enabled CPS and the roles that LLM plays in CPS. Second, we categorize existing works in terms of the application domain and discuss their key contributions. Third, we present commonly-used metrics and benchmarks for LLM-enabled CPS evaluation. Finally, we discuss future research opportunities and corresponding challenges of LLM-enabled CPS.more » « less
-
In Cyber-Physical Systems (CPS), sensor data integrity is crucial since acting on malicious sensor data can cause serious consequences, given the tight coupling between cyber components and physical systems. While extensive works focus on sensor attack detection, attack diagnosis that aims to find out when the attack starts has not been well studied yet. This temporal sensor attack diagnosis problem is equally important because many recovery methods rely on the accurate determination of trustworthy historical data. To address this problem, we propose a lightweight data-driven solution to achieve real-time sensor attack diagnosis. Our novel solution consists of five modules, with the attention and diagnosis ones as the core. The attention module not only helps accurately predict future sensor measurements but also computes statistical attention scores for the diagnosis module. Based on our unique observation that the score fluctuates sharply once an attack launches, the diagnosis module determines the onset of an attack through monitoring the fluctuation. Evaluated on high-dimensional high-fidelity simulators and a testbed, our solution demonstrates robust and accurate temporal diagnosis results while incurring millisecond-level computational overhead on Raspberry Pi.more » « less
-
Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel anomaly detection algorithms in the presence of a knowledgeable adversary need to be developed. However, this research is still in its infancy due to limited attack data availability and test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment of existing systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are characterized by malicious injections into the CPS through input, output, or both, which produce bounded changes in the detection residue. By using the SAGE framework, we generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we assume limited information asymmetries between attackers and defenders (e.g., insider knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in practice and allow understanding of the maximum conceivable damage. We propose an efficient solution procedure for the novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those case studies serve as modeling guidelines for the development of novel attack detection algorithms and comprehensive cyber-physical risk assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while only changing the input control signals minimally. This avoids detection and keeps the cost of an attack low. This highlights the need for more advanced detection algorithms and novel research in cyber-physical security.more » « less
-
Machine Learning (ML) technologies have been increasingly adopted in Medical Cyber-Physical Systems (MCPS) to enable smart healthcare. Assuring the safety and effectiveness of learning-enabled MCPS is challenging, as such systems must account for diverse patient profiles and physiological dynamics and handle operational uncertainties. In this paper, we develop a safety assurance case for ML controllers in learning-enabled MCPS, with an emphasis on establishing confidence in the ML-based predictions. We present the safety assurance case in detail for Artificial Pancreas Systems (APS) as a representative application of learning-enabled MCPS, and provide a detailed analysis by implementing a deep neural network for the prediction in APS. We check the sufficiency of the ML data and analyze the correctness of the ML-based prediction using formal verification. Finally, we outline open research problems based on our experience in this paper.more » « less