skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Input Current FFT Model-derived Comprehensive Comparison of Totem-pole PFC and H-Bridge PFC Converter DM EMI Performances
Award ID(s):
2236846
PAR ID:
10564659
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0500-5
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Roorkee, India
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. The Priority-based Flow Control (PFC) protocol is adopted to guarantee zero packet loss in many high-performance data centers. PFC, however, can induce deadlocks and in severe cases cause the entire network to be blocked. Existing solutions have focused on deadlock avoidance; unfortunately, they are not foolproof. Therefore, deadlock detection is a necessity. We propose ITSY, a novel system that correctly detects and resolves deadlocks entirely in the data plane. It works with any network topologies and routing algorithms. Unique to ITSY is the use of deadlock initial triggers, which contributes to efficient deadlock detection, mitigation, and recurrence prevention. ITSY provides three deadlock resolution mechanisms with different trade-off options. We implement ITSY for programmable switches in the P4 language. Experiments show that ITSY detects and resolves deadlocks rapidly with minimal overheads. 
    more » « less
  4. null (Ed.)
  5. This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information. 
    more » « less