skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contaminants of Emerging Concern in the Lower Volta River, Ghana, West Africa: The Agriculture, Aquaculture, and Urban Development Nexus
Abstract Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments across all continents and are relatively well known in the developed world. However, few studies have investigated their presence and biological effects in low- and middle-income countries. We provide a survey of CEC presence in the Volta River, Ghana, and examine the microbial consequences of anthropogenic activities along this economically and ecologically important African river. Water and sediment samples were taken by boat or from shore at 14 sites spanning 118 km of river course from the Volta estuary to the Akosombo dam. Sample extracts were prepared for targeted analysis of antimicrobial CECs, N,N-diethyl-meta-toluamide, and per- and polyfluoroalkyl substances (PFAS; water only). Concurrent samples were extracted to characterize the microbial community and antibiotic-resistant genes (ARGs). Antibiotics and PFAS (PFAS, 2–20 ng/L) were found in all water samples; however, their concentrations were usually in the low nanograms per liter range and lower than reported for other African, European, and North American studies. N,N-Diethyl-meta-toluamide was present in all samples. The number of different genes detected (between one and 10) and total ARG concentrations varied in both water (9.1 × 10−6 to 8.2 × 10−3) and sediment (2.2 × 10−4 to 5.3 × 10−2), with increases in gene variety at sites linked to urban development, sand mining, agriculture, and shellfish processing. Total ARG concentration spikes in sediment samples were associated with agriculture. No correlations between water quality parameters, CEC presence, and/or ARGs were noted. The presence of CECs in the lower Volta River highlights their global reach. The overall low concentrations of CECs detected is encouraging and, coupled with mitigation measures, can stymie future CEC pollution in the Volta River. Environ Toxicol Chem 2022;41:369–381. © 2021 SETAC  more » « less
Award ID(s):
2017788
PAR ID:
10564731
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Environmental Toxicology and Chemistry
Volume:
41
Issue:
2
ISSN:
0730-7268
Format(s):
Medium: X Size: p. 369-381
Size(s):
p. 369-381
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n = 24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials. 
    more » « less
  2. Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM . Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB ( P=0.0007 ) and tetM gene concentrations ( P=0.0425 ). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT , tetM , erm(35) , ermF , ermB , str , aadD , and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations. 
    more » « less
  3. Abstract Contaminants of emerging concern (CECs), including pharmaceutical compounds, have been found in irrigation waters and have found their way into crops through the uptake of contaminated water. Many farms in Puerto Rico are irrigated with water that might have considerable levels of CECs. The objective of this study was to determine the quantity of commonly detected CEC adsorbed onto soil particles of two contrasting tropical soils of Puerto Rico (Fraternidad, basic Vertisol [fine, smectitic, isohyperthermic Typic Haplusterts], and Mariana series, acid Ultisol [fine, mixed, active, isohyperthermic Typic Haplohumults]). A CECs single point and multicomponent adsorption experiments were carried out using the batch equilibrium technique. The CECs were naproxen (NPX), O‐desmethylnaproxen (O‐DesNPX), caffeine (CFN), paraxanthine (PX), carbamazepine (CBZ), carbamazepine‐10, 11‐epoxide (Ep‐CBZ), clofibric acid (ClofA), and salicylic acid (SA). The CEC concentrations in water before and after adsorption were determined using a triple quadrupole mass spectroscopy liquid chromatography. The results showed that SA was highly adsorbed by both soils, although in greater concentrations in Fraternidad than Mariana, probably because of greater cation‐bridging. Paraxanthine was adsorbed only in the multicomponent test, probably as a co‐adsorbate. Caffeine, CBZ, and their metabolites were adsorbed in both soils in lesser concentrations than SA and PX. However, NPX and ClofA were not adsorbed by either soil type. Thus, these CECs could potentially move more freely through the soil matrix and reach soil roots in greater quantities than other contaminants. 
    more » « less
  4. ABSTRACT Little is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens such as Shiga toxin-producing Escherichia coli (STEC) originating from these practices remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley of California was sampled over a 9-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and have functional and taxonomic diversity comparable to that observed in soils. With our sequencing effort (∼4 Gbp per library), we were unable to detect any pathogenic E. coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low abundance. Furthermore, there were no significant differences in the abundance of human- or cow-specific gut microbiome sequences in the downstream impacted sites compared to that in upstream more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, the high number of metagenomic reads carrying antibiotic resistance genes (ARGs) found in all samples was significantly higher than ARG reads in other available freshwater and soil metagenomes, suggesting that these communities may be natural reservoirs of ARGs. The work presented here should serve as a guide for sampling volumes, amount of sequencing to apply, and what bioinformatics analyses to perform when using metagenomics for public health risk studies of environmental samples such as sediments. IMPORTANCE Current agricultural and livestock practices contribute to fecal contamination in the environment and the spread of food- and waterborne disease and antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to public health are assessed by culture-based tests for the intestinal bacterium Escherichia coli . However, the accuracy of these traditional methods (e.g., low accuracy in quantification, and false-positive signal when PCR based) and their suitability for sediments remain unclear. We collected sediments for a time series metagenomics study from one of the most highly productive agricultural regions in the United States in order to assess how agricultural runoff affects the native microbial communities and if the presence of Shiga toxin-producing Escherichia coli (STEC) in sediment samples can be detected directly by sequencing. Our study provided important information on the potential for using metagenomics as a tool for assessment of public health risk in natural environments. 
    more » « less
  5. Abstract The perennial ice-covered lakes of the Antarctic McMurdo Dry Valleys harbour oligotrophic microbial communities that are separated geographically from other aquatic systems. Their microbiomes include planktonic microbes as well as lift-off mat communities that emerge from the ice. We used the ShortBRED protein family profiler to quantify the antibiotic resistance genes (ARGs) from metagenomes of lift-off mats emerging from ice and from filtered water samples of Lake Fryxell and Lake Bonney. The overall proportion of ARG hits was similar to that found in temperate-zone rural ponds with moderate human inputs. Specific ARGs showed distinct distributions for the two lakes and for mat vs planktonic sources. Metagenomic taxa distributions showed that mat phototrophs consisted mainly of cyanobacteria or Betaproteobacteria, whereas the water column phototrophs were mainly protists. An enrichment culture of the Betaproteobacterium Rhodoferax antarcticus from a Lake Fryxell mat sample showed an unusual mat-forming phenotype not previously reported for this species. Its genome showed no ARGs associated with Betaproteobacteria but had ARGs consistent with a minor Pseudomonas component. The Antarctic lake mats and water showed specific ARGs distinctive to the mat and water sources, but overall ARG levels were similar to those of temperate water bodies with moderate human inputs. 
    more » « less