skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.  more » « less
Award ID(s):
2227268
PAR ID:
10564798
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Cell
Volume:
187
Issue:
8
ISSN:
0092-8674
Page Range / eLocation ID:
1889 to 1906.e24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intrinsically disordered regions (IDRs) are important components of protein functionality, with their charge distribution serving as a key factor in determining their roles. Notably, many proteins possess IDRs that are highly negatively charged, characterized by sequences rich in aspartate (D) or glutamate (E) residues. Bioinformatic analyses indicate that negatively charged low-complexity IDRs are significantly more common than their positively charged counterparts rich in arginine (R) or lysine (K). For instance, sequences of 10 or more consecutive negatively charged residues (D or E) are present in 268 human proteins. In contrast, corresponding sequences of 10 or more consecutive positively charged residues (K or R) are present in only 12 human proteins. Interestingly, about 50% of proteins containing D/E tracts function as DNA-binding or RNA-binding proteins. Negatively charged IDRs can electrostatically mimic nucleic acids and dynamically compete with them for the DNA-binding domains (DBDs) or RNA-binding domains (RBDs) that are positively charged. This leads to a phenomenon known as autoinhibition, in which the negatively charged IDRs inhibit binding to nucleic acids by occupying the binding interfaces within the proteins through intramolecular interactions. Rather than merely reducing binding activity, negatively charged IDRs offer significant advantages for the functions of DNA/RNA-binding proteins. The dynamic competition between negatively charged IDRs and nucleic acids can accelerate the target search processes for these proteins. When a protein encounters DNA or RNA, the electrostatic repulsion force between the nucleic acids and the negatively charged IDRs can trigger conformational changes that allow the nucleic acids to access DBDs or RBDs. Additionally, when proteins are trapped at high-affinity non-target sites on DNA or RNA ("decoys"), the electrostatic repulsion from the negatively charged IDRs can rescue the proteins from these traps. Negatively charged IDRs act as gatekeepers, rejecting nonspecific ligands while allowing the target to access the molecular interfaces of DBDs or RBDs, which increases binding specificity. These IDRs can also promote proper protein folding, facilitate chromatin remodeling by displacing other proteins bound to DNA, and influence phase separation, affecting local pH. The functions of negatively charged IDRs can be regulated through protein-protein interactions, post-translational modifications, and proteolytic processing. These characteristics can be harnessed as tools for protein engineering. Some frame-shift mutations that convert negatively charged IDRs into positively charged ones are linked to human diseases. Therefore, it is crucial to understand the physicochemical properties and functional roles of negatively charged IDRs that compete with nucleic acids. 
    more » « less
  2. Disordered binding regions (DBRs), which are embedded within intrinsically disordered proteins or regions (IDPs or IDRs), enable IDPs or IDRs to mediate multiple protein-protein interactions. DBR-protein complexes were collected from the Protein Data Bank for which two or more DBRs having different amino acid sequences bind to the same (100% sequence identical) globular protein partner, a type of interaction herein called many-to-one binding. Two distinct binding profiles were identified: independent and overlapping. For the overlapping binding profiles, the distinct DBRs interact by means of almost identical binding sites (herein called “similar”), or the binding sites contain both common and divergent interaction residues (herein called “intersecting”). Further analysis of the sequence and structural differences among these three groups indicate how IDP flexibility allows different segments to adjust to similar, intersecting, and independent binding pockets. 
    more » « less
  3. Abstract Intrinsically disordered protein regions (IDRs) are highly dynamic sequences that rapidly sample a collection of conformations over time. In the past several decades, IDRs have emerged as a major component of many proteomes, comprising ~30% of all eukaryotic protein sequences. Proteins with IDRs function in a wide range of biological pathways and are notably enriched in signaling cascades that respond to environmental stresses. Here, we identify and characterize intrinsic disorder in the soluble cytoplasmic N‐terminal domains of MSL8, MSL9, and MSL10, three members of the MscS‐like (MSL) family of mechanosensitive ion channels. In plants, MSL channels are proposed to mediate cell and organelle osmotic homeostasis. Bioinformatic tools unanimously predicted that the cytosolic N‐termini of MSL channels are intrinsically disordered. We examined the N‐terminus of MSL10 (MSL10 N ) as an exemplar of these IDRs and circular dichroism spectroscopy confirms its disorder. MSL10 N adopted a predominately helical structure when exposed to the helix‐inducing compound trifluoroethanol (TFE). Furthermore, in the presence of molecular crowding agents, MSL10 N underwent structural changes and exhibited alterations to its homotypic interaction favorability. Lastly, interrogations of collective behavior via in vitro imaging of condensates indicated that MSL8 N , MSL9 N , and MSL10 N have sharply differing propensities for self‐assembly into condensates, both inherently and in response to salt, temperature, and molecular crowding. Taken together, these data establish the N‐termini of MSL channels as intrinsically disordered regions with distinct biophysical properties and the potential to respond uniquely to changes in their physiochemical environment. 
    more » « less
  4. Abstract In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands (‘decoys’). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process. 
    more » « less
  5. Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels. 
    more » « less