skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Bounding Scheme for Influence Diagrams
Influence diagrams provide a modeling and inference framework for sequential decision problems, representing the probabilistic knowledge by a Bayesian network and the preferences of an agent by utility functions over the random variables and decision variables. Computing the maximum expected utility (MEU) and the optimizing policy is exponential in the constrained induced width and therefore is notoriously difficult for larger models. In this paper, we develop a new bounding scheme for MEU that applies partitioning based approximations on top of the decomposition scheme called a multi-operator cluster DAG for influence diagrams that is more sensitive to the underlying structure of the model than the classical join-tree decomposition of influence diagrams. Our bounding scheme utilizes a cost-shifting mechanism to tighten the bound further. We demonstrate the effectiveness of the proposed scheme on various hard benchmarks.  more » « less
Award ID(s):
2008516
PAR ID:
10564839
Author(s) / Creator(s):
; ;
Publisher / Repository:
{AAAI} Press
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
35
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
12158 to 12165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Influence diagrams (IDs) are graphical models for representing and reasoning with sequential decision-making problems under uncertainty. Limited memory influence diagrams (LIMIDs) model a decision-maker (DM) who forgets the history in the course of making a sequence of decisions. The standard inference task in IDs and LIMIDs is to compute the maximum expected utility (MEU), which is one of the most challenging tasks in graphical models. We present a model decomposition framework in both IDs and LIMIDs, which we call submodel decomposition that generates a tree of single-stage decision problems through a tree clustering scheme. We also develop a valuation algebra over the submodels that leads to a hierarchical message passing algorithm that propagates conditional expected utility functions over a submodel-tree as external messages. We show that the overall complexity is bounded by the maximum tree-width over the submodels, common in graphical model algorithms. Finally, we present a new method for computing upper bounds over a submodel-tree by first exponentiating the utility functions yielding a standard probabilistic graphical model as an upper bound and then applying standard variational upper bounds for the marginal MAP inference, yielding tighter upper bounds compared with state-of-the-art bounding schemes for the MEU task. 
    more » « less
  2. An influence diagram is a graphical representation of sequential decision-making under uncertainty, defining a structured decision problem by conditional probability functions and additive utility functions over discrete state and action variables. The task of finding the maximum expected utility of influence diagrams is closely related to the cost-optimal probabilistic planning, stochastic programmings, or model-based reinforcement learning. In this position paper, we address the heuristic search for solving influence diagram, where we generate admissible heuristic functions from graph decomposition schemes. Then, we demonstrate how such heuristics can guide an AND/OR branch and bound search. Finally, we briefly discuss the future directions for improving the quality of heuristic functions and search strategies. 
    more » « less
  3. An influence diagram is a graphical model of a Bayesian decision problem that is solved by finding a strategy that maximizes expected utility. When an influence diagram is solved by variable elimination or a related dynamic programming algorithm, it is traditional to represent a strategy as a sequence of policies, one for each decision variable, where a policy maps the relevant history for a decision to an action. We propose an alternative representation of a strategy as a graph, called a strategy graph, and show how to modify a variable elimination algorithm so that it constructs a strategy graph. We consider both a classic variable elimination algorithm for influence diagrams and a recent extension of this algorithm that has more relaxed constraints on elimination order that allow improved performance. We consider the advantages of representing a strategy as a graph and, in particular, how to simplify a strategy graph so that it is easier to interpret and analyze. 
    more » « less
  4. Groote, J. F.; Larsen, K. G. (Ed.)
    In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such proofs indicate that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a prototype solver to obtain polynomially sized proofs on benchmarks for the mutilated chessboard and pigeonhole problems—ones that are very challenging for search-based SAT solvers. 
    more » « less
  5. In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers. 
    more » « less