skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation Spaces for Multi-Output Neural Networks: Insights on Multi-Task Learning and Network Compression
This paper introduces a novel theoretical framework for the analysis of vector-valued neu- ral networks through the development of vector-valued variation spaces, a new class of reproducing kernel Banach spaces. These spaces emerge from studying the regularization e↵ect of weight decay in training networks with activation functions like the rectified linear unit (ReLU). This framework o↵ers a deeper understanding of multi-output networks and their function-space characteristics. A key contribution of this work is the development of a representer theorem for the vector-valued variation spaces. This representer theorem estab- lishes that shallow vector-valued neural networks are the solutions to data-fitting problems over these infinite-dimensional spaces, where the network widths are bounded by the square of the number of training data. This observation reveals that the norm associated with these vector-valued variation spaces encourages the learning of features that are useful for multiple tasks, shedding new light on multi-task learning with neural networks. Finally, this paper develops a connection between weight-decay regularization and the multi-task lasso problem. This connection leads to novel bounds for layer widths in deep networks that depend on the intrinsic dimensions of the training data representations. This insight not only deepens the understanding of the deep network architectural requirements, but also yields a simple convex optimization method for deep neural network compression. The performance of this compression procedure is evaluated on various architectures.  more » « less
Award ID(s):
2134140
PAR ID:
10564865
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MIT Press
Date Published:
Journal Name:
Journal of Machine Learning Research
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a variational framework to understand the properties of the functions learned by neural networks fit to data. We propose and study a family of continuous-domain linear inverse problems with total variation-like regularization in the Radon domain subject to data fitting constraints. We derive a representer theorem showing that finite-width, singlehidden layer neural networks are solutions to these inverse problems. We draw on many techniques from variational spline theory and so we propose the notion of polynomial ridge splines, which correspond to single-hidden layer neural networks with truncated power functions as the activation function. The representer theorem is reminiscent of the classical reproducing kernel Hilbert space representer theorem, but we show that the neural network problem is posed over a non-Hilbertian Banach space. While the learning problems are posed in the continuous-domain, similar to kernel methods, the problems can be recast as finite-dimensional neural network training problems. These neural network training problems have regularizers which are related to the well-known weight decay and path-norm regularizers. Thus, our result gives insight into functional characteristics of trained neural networks and also into the design neural network regularizers. We also show that these regularizers promote neural network solutions with desirable generalization properties. Keywords: neural networks, splines, inverse problems, regularization, sparsity 
    more » « less
  2. We introduce a framework for performing vector-valued regression in finite-dimensional Hilbert spaces. Using Lipschitz smoothness as our regularizer, we leverage Kirszbraun’s extension theorem for off-data prediction. We analyze the statistical and computational aspects of this method—to our knowledge, its first application to supervised learning. We decompose this task into two stages: training (which corresponds operationally to smoothing/regularization) and prediction (which is achieved via Kirszbraun extension). Both are solved algorithmically via a novel multiplicative weight updates (MWU) scheme, which, for our problem formulation, achieves significant runtime speedups over generic interior point methods. Our empirical results indicate a dramatic advantage over standard off-the-shelf solvers in our regression setting. 
    more » « less
  3. In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight matrices when training deep ReLU neural networks. Our results show that training neural networks with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matrices. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically investigate the connection between this bias and generalization, finding that it has a marginal effect on generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks of any width or depth, including those with residual connections and convolutional layers. 
    more » « less
  4. Understanding the fundamental mechanism behind the success of deep neural networks is one of the key challenges in the modern machine learning literature. Despite numerous attempts, a solid theoretical analysis is yet to be developed. In this paper, we develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization. We first show that the training of multiple threelayer ReLU sub-networks with weight decay regularization can be equivalently cast as a convex optimization problem in a higher dimensional space, where sparsity is enforced via a group `1- norm regularization. Consequently, ReLU networks can be interpreted as high dimensional feature selection methods. More importantly, we then prove that the equivalent convex problem can be globally optimized by a standard convex optimization solver with a polynomial-time complexity with respect to the number of samples and data dimension when the width of the network is fixed. Finally, we numerically validate our theoretical results via experiments involving both synthetic and real datasets. 
    more » « less
  5. Abstract We consider the problem of estimating the input and hidden variables of a stochastic multi-layer neural network (NN) from an observation of the output. The hidden variables in each layer are represented as matrices with statistical interactions along both rows as well as columns. This problem applies to matrix imputation, signal recovery via deep generative prior models, multi-task and mixed regression, and learning certain classes of two-layer NNs. We extend a recently-developed algorithm—multi-layer vector approximate message passing, for this matrix-valued inference problem. It is shown that the performance of the proposed multi-layer matrix vector approximate message passing algorithm can be exactly predicted in a certain random large-system limit, where the dimensions N × d of the unknown quantities grow as N → ∞ with d fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features as well as training samples grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning. 
    more » « less