skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Kirszbraun extension with applications to regression
We introduce a framework for performing vector-valued regression in finite-dimensional Hilbert spaces. Using Lipschitz smoothness as our regularizer, we leverage Kirszbraun’s extension theorem for off-data prediction. We analyze the statistical and computational aspects of this method—to our knowledge, its first application to supervised learning. We decompose this task into two stages: training (which corresponds operationally to smoothing/regularization) and prediction (which is achieved via Kirszbraun extension). Both are solved algorithmically via a novel multiplicative weight updates (MWU) scheme, which, for our problem formulation, achieves significant runtime speedups over generic interior point methods. Our empirical results indicate a dramatic advantage over standard off-the-shelf solvers in our regression setting.  more » « less
Award ID(s):
2216899 1934843 1955173
PAR ID:
10518032
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Mathematical Programming
ISSN:
0025-5610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a fast algorithm for computing the entire ridge regression regularization path in nearly linear time. Our method constructs a basis on which the solution of ridge regression can be computed instantly for any value of the regularization parameter. Consequently, linear models can be tuned via cross-validation or other risk estimation strategies with substantially better efciency. The algorithm is based on iteratively sketching the Krylov subspace with a binomial decomposition over the regularization path. We provide a convergence analysis with various sketching matrices and show that it improves the state-of-the-art computational complexity. We also provide a technique to adaptively estimate the sketching dimension. This algorithm works for both the over-determined and under-determined problems. We also provide an extension for matrix-valued ridge regression. The numerical results on real medium and large-scale ridge regression tasks illustrate the efectiveness of the proposed method compared to standard baselines which require super-linear computational time. 
    more » « less
  2. Regression ensembles consisting of a collection of base regression models are often used to improve the estimation/prediction performance of a single regression model. It has been shown that the individual accuracy of the base models and the ensemble diversity are the two key factors affecting the performance of an ensemble. In this paper, we derive a theory for regression ensembles that illustrates the subtle trade-off between individual accuracy and ensemble diversity from the perspective of statistical correlations. Then, inspired by our derived theory, we further propose a novel loss function and a training algorithm for deep learning regression ensembles. We then demonstrate the advantage of our training approach over standard regression ensemble methods including random forest and gradient boosting regressors with both benchmark regression problems and chemical sensor problems involving analysis of Raman spectroscopy. Our key contribution is that our loss function and training algorithm is able to manage diversity explicitly in an ensemble, rather than merely allowing diversity to occur by happenstance. 
    more » « less
  3. null (Ed.)
    The high frequency, low amplitude wing motion that mosquitoes employ to dry their wings inspires the study of drop release from millimetric, forced cantilevers. Our mimicking system, a 10-mm polytetrafluoroethylene cantilever driven through ±1 mm base amplitude at 85 Hz, displaces drops via three principal ejection modes: normal-to-cantilever ejection, sliding and pinch-off. The selection of system variables such as cantilever stiffness, drop location, drop size and wetting properties modulates the appearance of a particular ejection mode. However, the large number of system features complicate the prediction of modal occurrence, and the transition between complete and partial liquid removal. In this study, we build two predictive models based on ensemble learning that predict the ejection mode, a classification problem, and minimum inertial force required to eject a drop from the cantilever, a regression problem. For ejection mode prediction, we achieve an accuracy of 85% using a bagging classifier. For inertial force prediction, the lowest root mean squared error achieved is 0.037 using an ensemble learning regression model. Results also show that ejection time and cantilever wetting properties are the dominant features for predicting both ejection mode and the minimum inertial force required to eject a drop. 
    more » « less
  4. In this paper, we focus on the problem of conformal prediction with conditional guarantees. Prior work has shown that it is impossible to construct nontrivial prediction sets with full conditional coverage guarantees. A wealth of research has considered relaxations of full conditional guarantees, relying on some predefined uncertainty structures. Departing from this line of thinking, we propose Partition Learning Conformal Prediction (PLCP), a framework to improve conditional validity of prediction sets through learning uncertainty-guided features from the calibration data. We implement PLCP efficiently with alternating gradient descent, utilizing off-the-shelf machine learning models. We further analyze PLCP theoretically and provide conditional guarantees for infinite and finite sample sizes. Finally, our experimental results over four real-world and synthetic datasets show the superior performance of PLCP compared to state-of-the-art methods in terms of coverage and length in both classification and regression scenarios. 
    more » « less
  5. We propose XVO, a semi-supervised learning method for training generalized monocular Visual Odometry (VO) models with robust off-the-self operation across diverse datasets and settings. In contrast to standard monocular VO approaches which often study a known calibration within a single dataset, XVO efficiently learns to recover relative pose with real-world scale from visual scene semantics, i.e., without relying on any known camera parameters. We optimize the motion estimation model via self-training from large amounts of unconstrained and heterogeneous dash camera videos available on YouTube. Our key contribution is twofold. First, we empirically demonstrate the benefits of semi-supervised training for learning a general-purpose direct VO regression network. Second, we demonstrate multi-modal supervision, including segmentation, flow, depth, and audio auxiliary prediction tasks, to facilitate generalized representations for the VO task. Specifically, we find audio prediction task to significantly enhance the semi-supervised learning process while alleviating noisy pseudo-labels, particularly in highly dynamic and out-of-domain video data. Our proposed teacher network achieves state-of-the-art performance on the commonly used KITTI benchmark despite no multi-frame optimization or knowledge of camera parameters. Combined with the proposed semi-supervised step, XVO demonstrates off-the-shelf knowledge transfer across diverse conditions on KITTI, nuScenes, and Argoverse without fine-tuning. 
    more » « less