skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Framework for Transitions in the Built Environment: Insights from Compound Hazards in the COVID-19 Era
The COVID-19 era has witnessed numerous successful and unsuccessful attempts to adapt or reconfigure physical, virtual, and hybrid aspects of the built environment in order to mitigate the risks of co-occuring (i.e., compound) hazards. But it has also witnessed major challenges to ensuring that the protections these reconfigurations afford are equitably distributed. Additional theoretical and empirical research is needed to inform transitions (via adaptive reconfiguration) toward short-term goals of health and well-being, as well as to guide transformations (via the establishment of stable configuration) toward longer-term goals of equitable societal function. To this end, this paper presents a framework for conceptualizing adaptation of the built environment as a series of state transitions in response to (or in anticipation of) compound hazards. It draws upon cases from recent experience in the areas of food production, shelter, and education to critique, clarify, and explicate this framework. It concludes with implications for further research on the management of transitions in the built environment under a range of hazard scenarios.  more » « less
Award ID(s):
2041666
PAR ID:
10564872
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Infrastructure Systems
Date Published:
Journal Name:
Journal of Infrastructure Systems
Volume:
30
Issue:
1
ISSN:
1076-0342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bolognesi, T.; Pinto, F.S.; Farrelly, M. (Ed.)
    Transitions toward sustainability are triggered by confluences of natural, built infrastructure, and social, economic, and political factors. As many urban water management regimes across the globe increasingly face hydrologic stress, it is critical to systematically understand how these factors interact to hasten or inhibit transitions to more sustainable states. Scholars have used many frameworks to study transitions. This chapter applies one of them, the Robustness of Coupled Infrastructure Systems (CIS) framework, to demonstrate how interactions among natural, human, and built infrastructure have impacted the performance of urban water systems in three metropolitan areas in the United States: Miami, Las Vegas, and Los Angeles. We illustrate how the CIS framework can allow researchers to organize the often non-linear and slow-moving forces underlying transitions and, consequently, to gain greater leverage to explain system sustainability. 
    more » « less
  2. Abstract. Compound flooding, caused by the sequence and/or co-occurrence of flood drivers (i.e., river discharge and elevated sea level), can lead to devastating consequences for society. Weak and insufficient progress toward sustainable development and disaster risk reduction is likely to exacerbate the catastrophic impacts of these events on vulnerable communities. For this reason, it is indispensable to develop new perspectives on evaluating compound-flooding dependence and communicating the associated hazards to meet UN Sustainable Development Goals (SDGs) related to climate action, sustainable cities, and sustainable coastal communities. The first step in examining bivariate dependence is to plot the data in the variable space, i.e., visualizing a scatterplot, where each axis represents a variable of interest, and then computing a form of correlation between them. This paper introduces the Angles method, based on Euclidean geometry of the so-called “subject space”, as a complementary visualization approach specifically designed for communicating the dependence structure of compound-flooding drivers to diverse end-users. Here, we evaluate, for the first time, the utility of this geometric space in computing and visualizing the dependence structure of compound-flooding drivers. To assess the effectiveness of this method as a hazard communication tool, we conducted a survey with a diverse group of end-users, including academic and non-academic respondents. The survey results provide insights into the perceptions regarding the applicability of the Angles method and highlight its potential as an intuitive alternative to scatterplots in depicting the evolution of dependence in the non-stationary environment. This study emphasizes the importance of innovative visualization techniques in bridging the gap between scientific insights and practical applications, supporting more effective compound flood hazard communication. 
    more » « less
  3. Technology transfer entails the systematic transference of scientific research results to practical tasks. The research product may be a novel design, an effective process, a tool or a set of tools. Effective technology transfer depends on many factors. It includes recognizing a gap in knowledge, focusing on the end user’s needs, long-term planning, effective communication and collaboration between researchers, standards organizations, and potential users, and a successful reduction of the knowledge or training burden required by the user. This Research Topic provides five examples of robust technology transfer from researchers seeking to mitigate the effect of natural hazards on the built and natural environment—transfers of knowledge that will significantly advance our nation’s resilience in the face of growing natural hazard threats. In 2016, the National Science Foundation established the Natural Hazards Engineering Research Infrastructure (NHERI) network. NHERI provides engineering and social science researchers with access to a world-class research infrastructure to support their efforts to improve the resilience and sustainability of the nation’s civil, natural and social infrastructure against earthquakes, windstorms and associated natural hazards such as tsunami and storm surge in coastal areas. Supported by the National Science Foundation, NHERI is a nation-wide network that consists of 12 university-based, shared-use experimental facilities, a computational modeling and simulation center, and a shared community cyber-infrastructure. 
    more » « less
  4. Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities. 
    more » « less
  5. Abstract Compound climate hazards, such as co-occurring temperature and precipitation extremes, substantially impact people and ecosystems. Internal climate variability combines with the forced global warming response to determine both the magnitude and spatial distribution of these events, and their consequences can propagate from one country to another via many pathways. We examine how exposure to compound climate hazards in one country is transmitted internationally via agricultural trade networks by analyzing a large ensemble of climate model simulations and comprehensive trade data of four crops (i.e. wheat, maize, rice and soya). Combinations of variability-driven climate patterns and existing global agricultural trade give rise to a wide range of possible outcomes in the current climate. In the most extreme simulated year, 20% or more of the caloric supply in nearly one third of the world’s countries are exposed to compound heat and precipitation hazards. Countries with low levels of diversification, both in the number of suppliers and the regional climates of those suppliers, are more likely to import higher fractions of calories (up to 93%) that are exposed to these compound hazards. Understanding how calories exposed to climate hazards are transmitted through agricultural trade networks in the current climate can contribute to improved anticipatory capacity for national governments, international trade policy, and agricultural-sector resilience. Our results highlight the need for concerted effort toward merging cutting-edge seasonal-to-decadal climate prediction with international trade analysis in support of a new era of anticipatory Anthropocene risk management. 
    more » « less