Abstract Development of high‐performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one‐step production of Ru‐RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott‐Schottky heterojunctions significantly enhances charge transfer across the Ru‐RuO2interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 mKOH. Among the series, the sample prepares at 300 A for 10 s exhibits the best performance, with an overpotential of only −31 mV for HER and +240 mV for OER to reach the current density of 10 mA cm⁻2. Additionally, the catalyst demonstrates excellent durability, with minimal impacts of electrolyte salinity. With the sample as the bifunctional catalysts for overall water splitting, an ultralow cell voltage of 1.43 V is needed to reach 10 mA cm⁻2, 160 mV lower than that with a commercial 20% Pt/C and RuO₂/C mixture. These results highlight the significant potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting and sustainable hydrogen production from seawater.
more »
« less
Rapid Synthesis of Ruthenium–Copper Nanocomposites as High‐Performance Bifunctional Electrocatalysts for Electrochemical Water Splitting
Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting.
more »
« less
- Award ID(s):
- 1900235
- PAR ID:
- 10564895
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- Volume:
- 20
- Issue:
- 46
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ruthenium has emerged as a promising substitute for platinum toward the hydrogen evolution/oxidation reaction (HER/HOR). Herein, ruthenium/carbon composites are prepared by magnetic induction heating (300 A, 10 s) of RuCl3, RuBr3or RuI3loaded on hollow N‐doped carbon cages (HNC). The HNC‐RuCl3‐300A sample consists of Ru nanoparticles (dia. 1.96 nm) and abundant Cl residues. HNC‐RuBr3‐300A possesses a larger nanoparticle size (≈19.36 nm) and lower content of Br residues. HNC‐RuI3‐300A contains only bulk‐like Ru agglomerates with a minimal amount of I residues, due to reduced Ru‐halide bonding interactions. Among these, HNC‐RuCl3‐300A exhibits the best HER activity in alkaline media, with a low overpotential of only −26 mV to reach 10 mA cm−2, even outperforming Pt/C, and can be used as the cathode catalyst for anion exchange membrane water electrolyzer (along with commercial RuO2as the anode catalyst), producing 0.5 A cm−2at 1.88 V for up to 100 h, a performance markedly better than that with Pt/C. HNC‐RuCl3‐300A also exhibits the best HOR activity, with a half‐wave potential (+18 mV) even lower than that of Pt/C (+35 mV). These activities are ascribed to the combined contributions of small Ru nanoparticles and Ru‐to‐halide charge transfer that weaken H adsorption.more » « less
-
Abstract An amphiphilic block copolymer, poly (styrene-2-polyvinyl pyridine-ethylene oxide), was used as a structure-directing and stabilizing agent to synthesize TiO2/RuO2nanocomposite. The strong interaction of polymers with metal precursors led to formation of a porous heterointerface of TiO2/RuO2. It acted as a bridge for electron transport, which can accelerate the water splitting reaction. Scanning electron microscopy, energy-dispersiveX-ray spectroscopy, transmission electron microscopy, andX-ray diffraction analysis of TiO2/RuO2samples revealed successful fabrication of TiO2/RuO2nanocomposites. The TiO2/RuO2nanocomposites were used to measure electrochemical water splitting in three-electrode systems in 0.1-M KOH. Electrochemical activities unveil that TiO2/RuO2-150 nanocomposites displayed superior oxygen evolution reaction activity, having a low overpotential of 260 mV with a Tafel slope of 80 mVdec−1. Graphical abstractmore » « less
-
Abstract There has been a great deal of recent interest in extended compounds containing Ru3+and Ru4+in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6(X=Cl or Br), MA2MRuX6(M=Na, K or Ag;X=Cl or Br) and MA3Ru2X9(X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6with Ru4+crystallize in the trigonal space groupand can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6with M+and Ru3+crystallize in a structure related to BaNiO3with alternatingMX6and RuX6face‐shared octahedra forming linear chains in the trigonalspace group. The compound MA3Ru2Br9crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.more » « less
-
Abstract Ruthenium has been hailed as a competitive alternative for platinum toward hydrogen evolution reaction (HER), a critical process in electrochemical water splitting. In this study, we successfully prepare metallic Ru nanoparticles supported on carbon paper by utilizing a novel magnetic induction heating (MIH) method. The samples are obtained within seconds, featuring a Cl‐enriched surface that is unattainable via conventional thermal annealing. The best sample within the series shows a remarkable HER activity in both acidic and alkaline media with an overpotential of only ‐23 and ‐12 mV to reach the current density of 10 mA/cm2, highly comparable to that of the Pt/C benchmark. Theoretical studies based on density functional theory show that the excellent electrocatalytic activity is accounted by the surface metal‐Cl species that facilitate charge transfer and downshift the d‐band center. Results from this study highlight the unique advantages of MIH in rapid sample preparation, where residual anion ligands play a critical role in manipulating the electronic properties of the metal surfaces and the eventual electrocatalytic activity.more » « less
An official website of the United States government

