skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2025

Title: Demo: Experimentation with mobile 28 GHz phased array antenna modules
Massive MIMO has the potential to support demands of next generation networks and emerging applications such as V2V/V2X communication and augmented reality. ● Millimeter-Wave (mmWave) frequencies allow for larger bandwidth as well as compact form factor of antenna arrays with many elements. ● The COSMOS testbed has deployed indoor and outdoor 28GHz phased array antenna modules (PAAMs) to support experimentation with these emerging technologies. ● Mobile PAAMs have been developed to enable experimentation anywhere and with mobility.  more » « less
Award ID(s):
2232455
PAR ID:
10565016
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
in Proc. ACM MobiCom’24, 2024
Date Published:
Format(s):
Medium: X
Location:
Washington, DC
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) often lack the size, weight, and power to support large antenna arrays or a large number of radio chains. Despite such limitations, emerging applications that require the use of swarms, where UAVs form a pattern and coordinate towards a common goal, must have the capability to transmit in any direction in three-dimensional (3D) space from moment to moment. In this work, we design a measurement study to evaluate the role of antenna polarization diversity on UAV systems communicating in arbitrary 3D space. To do so, we construct flight patterns where one transmitting UAV is hovering at a high altitude (80 m) and a receiving UAV hovers at 114 different positions that span 3D space at a radial distance of approximately 20 m along equally-spaced elevation and azimuth angles. To understand the role of diverse antenna polarizations, both UAVs have a horizontally-mounted antenna and a vertically-mounted antenna-each attached to a dedicated radio chain-creating four wireless channels. With this measurement campaign, we seek to understand how to optimally select an antenna orientation and quantify the gains in such selections. 
    more » « less
  2. In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband F 
    more » « less
  3. In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband FD wireless link demonstration using the GNU Radio software. 
    more » « less
  4. null (Ed.)
    ABSTRACT To support experimentation with full-duplex (FD) wireless, we recently integrated two FlexICoN Gen-2 wideband FD radios in the open-access, city-scale NSF PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio, and a remotely accessible compute node. The RF SI canceller box includes an RF canceller printed circuit board which emulates an integrated circuit implementation based on the technique of frequency-domain equalization. The Gen-2 canceller box can achieve up to 50 dB RF SI cancellation across 20 MHz bandwidth. In this demo, we present the design and implementation of the open-acccess, remotely accessible FD radios that are integrated in the indoor COSMOS Sandbox 2 at Columbia University. We also demonstrate example experiments that are available to researchers, where demo participants can observe the visualized performance of the open-access FD radios 
    more » « less
  5. Abstract Highly integrated, flexible, and ultrathin wireless communication components are in significant demand due to the explosive growth of portable and wearable electronic devices in the fifth‐generation (5G) network era, but only conventional metals meet the requirements for emerging radio‐frequency (RF) devices so far. Here, it is reported on Ti3C2TxMXene microstrip transmission lines with low‐energy attenuation and patch antennas with high‐power radiation at frequencies from 5.6 to 16.4 GHz. The radiation efficiency of a 5.5 µm thick MXene patch antenna manufactured by spray‐coating from aqueous solution reaches 99% at 16.4 GHz, which is about the same as that of a standard 35 µm thick copper patch antenna at about 15% of its thickness and 7% of the copper weight. MXene outperforms all other materials evaluated for patch antennas to date. Moreover, it is demonstrated that an MXene patch antenna array with integrated feeding circuits on a conformal surface has comparable performance with that of a copper antenna array at 28 GHz, which is a target frequency in practical 5G applications. The versatility of MXene antennas in wide frequency ranges coupled with the flexibility, scalability, and ease of solution processing makes MXene promising for integrated RF components in various flexible electronic devices. 
    more » « less