skip to main content

Title: Effect of Antenna Orientation on the Air-to-Air Channel in Arbitrary 3D Space
Unmanned Aerial Vehicles (UAVs) often lack the size, weight, and power to support large antenna arrays or a large number of radio chains. Despite such limitations, emerging applications that require the use of swarms, where UAVs form a pattern and coordinate towards a common goal, must have the capability to transmit in any direction in three-dimensional (3D) space from moment to moment. In this work, we design a measurement study to evaluate the role of antenna polarization diversity on UAV systems communicating in arbitrary 3D space. To do so, we construct flight patterns where one transmitting UAV is hovering at a high altitude (80 m) and a receiving UAV hovers at 114 different positions that span 3D space at a radial distance of approximately 20 m along equally-spaced elevation and azimuth angles. To understand the role of diverse antenna polarizations, both UAVs have a horizontally-mounted antenna and a vertically-mounted antenna-each attached to a dedicated radio chain-creating four wireless channels. With this measurement campaign, we seek to understand how to optimally select an antenna orientation and quantify the gains in such selections.
Authors:
; ; ; ;
Award ID(s):
1823304
Publication Date:
NSF-PAR ID:
10298176
Journal Name:
2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)
Page Range or eLocation-ID:
298 to 303
Sponsoring Org:
National Science Foundation
More Like this
  1. In the next wave of swarm-based applications, unmanned aerial vehicles (UAVs) need to communicate with peer drones in any direction of a three-dimensional (3D) space. On a given drone and across drones, various antenna positions and orientations are possible. We know that, in free space, high levels of signal loss are expected if the transmitting and receiving antennas are cross polarized. However, increasing the reflective and scattering objects in the channel between a transmitter and receiver can cause the received polarization to become completely independent from the transmitted polarization, making the cross-polarization of antennas insignificant. Usually, these effects are studied in the context of cellular and terrestrial networks and have not been analyzed when those objects are the actual bodies of the communicating drones that can take different relative directions or move at various elevations. In this work, we show that the body of the drone can affect the received power across various antenna orientations and positions and act as a local scatterer that increases channel depolarization, reducing the cross-polarization discrimination (XPD). To investigate these effects, we perform experimentation that is staged in terms of complexity from a controlled environment of an anechoic chamber with and without drone bodies tomore »in-field environments where drone-mounted antennas are in-flight with various orientations and relative positions with the following outcomes: (i.) drone relative direction can significantly impact the XPD values, (ii.) elevation angle is a critical factor in 3D link performance, (iii.) antenna spacing requirements are altered for co-located cross-polarized antennas, and (iv.) cross-polarized antenna setups more than double spectral efficiency. Our results can serve as a guide for accurately simulating and modeling UAV networks and drone swarms.« less
  2. Unmanned aerial vehicles (UAV) have been gaining significant attention in recent times as they are becoming increasingly accessible and easier to use. The advancements in flight controller technology have enabled users to fly a recreational UAV without any previous flight experience. UAVs are used in a variety of applications, ranging from civilian tasks, law enforcement, and rescue applications, to military reconnaissance and air strike missions. This article serves as an introduction to UAV systems' architecture, classification, and applications to help researchers and practitioners starting in this field get adequate information to understand the current state of UAV technologies. The article starts by inspecting the UAVs' body configuration styles and explains the physical components and sensors that are necessary to operate and fly a UAV system. The article also provides a comparison of several components for state-of-the-art UAVs. The article further discusses different propulsion methods and various payloads that could be mounted on the UAV. The article then explores the classification of UAVs followed by the application of UAVs in different domains, such as recreational, commercial, and military. Finally, the article provides a discussion of futuristic technologies and applications of UAVs along with their associated challenges.
  3. We consider multiple unmanned aerial vehi- cles (UAVs) serving a density of ground terminals (GTs) as mobile base stations. The objective is to minimize the outage probability of GT-to-UAV transmissions. In this context, the optimal placement of UAVs under different UAV altitude constraints and GT densities is studied. First, using a random deployment argument, a general upper bound on the optimal outage probability is found for any density of GTs and any number of UAVs. Lower bounds on the performance of optimal deployments are also deter- mined. The upper and lower bounds are combined to show that the optimal outage probability decays exponentially with the number of UAVs for GT densities with finite support. Next, the structure of optimal deployments are studied when the common altitude constraint is large. In this case, for a wide class of GT densities, it is shown that all UAVs should be placed to the same location in an optimal deployment. A design implication is that one can use a single multi-antenna UAV as opposed to multiple single-antenna UAVs without loss of optimality. Numerical optimization of UAV deployments are carried out using particle swarm optimization. Simulation results are also presented to confirm the analytical findings.
  4. ABSTRACT The jet opening angle and inclination of GW170817 – the first detected binary neutron star merger – were vital to understand its energetics, relation to short gamma-ray bursts, and refinement of the standard siren-based determination of the Hubble constant, H0. These basic quantities were determined through a combination of the radio light curve and Very Long Baseline Interferometry (VLBI) measurements of proper motion. In this paper, we discuss and quantify the prospects for the use of radio VLBI observations and observations of scintillation-induced variability to measure the source size and proper motion of merger afterglows, and thereby infer properties of the merger including inclination angle, opening angle, and energetics. We show that these techniques are complementary as they probe different parts of the circum-merger density/inclination angle parameter space and different periods of the temporal evolution of the afterglow. We also find that while VLBI observations will be limited to the very closest events it will be possible to detect scintillation for a large fraction of events beyond the range of current gravitational wave detectors. Scintillation will also be detectable with next-generation telescopes such as the Square Kilometre Array, 2000 antenna Deep Synoptic Array, and the next-generation Very Large Array,more »for a large fraction of events detected with third-generation gravitational wave detectors. Finally, we discuss prospects for the measurement of the H0 with VLBI observations of neutron star mergers and compare this technique to other standard siren methods.« less
  5. The increasing availability of autonomous smallsize Unmanned Aerial Vehicles (UAVs) has provided a promising way for data gathering from Wireless Sensor Networks (WSNs) with the advantages of high mobility, flexibility, and good speed. However, few works considered the situations that multiple UAVs are collaboratively used and the fine-grained trajectory plans of multiple UAVs are devised for collecting data from network including detailed traveling and hovering plans of them in the continuous space. In this paper, we investigate the problem of the Fine-grained Trajectory Plan for multi-UAVs (FTP), in which m UAVs are used to collect data from a given WSN, where m ≥ 1. The problem entails not only to find the flight paths of multiple UAVs but also to design the detailed hovering and traveling plans on their paths for efficient data gathering from WSN. The objective of the problem is to minimize the maximum flight time of UAVs such that all sensory data of WSN is collected by the UAVs and transported to the base station. We first propose a mathematical model of the FTP problem and prove that the problem is NP-hard. To solve the FTP problem, we first study a special case of the FTP problemmore »when m = 1, called FTP with Single UAV (FTPS) problem. Then we propose a constantfactor approximation algorithm for the FTPS problem. Based on the FTPS problem, an approximation algorithm for the general version of the FTP problem when m > 1 is further proposed, which can guarantee a constant factor of the optimal solution. Afterwards, the proposed algorithms are verified by extensive simulations.« less